{"title":"青铜泵叶轮因空化损坏而失效","authors":"","doi":"10.31399/asm.fach.modes.c0046414","DOIUrl":null,"url":null,"abstract":"\n Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure of a Bronze Pump Impeller by Cavitation Damage\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.modes.c0046414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.\",\"PeriodicalId\":231268,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.modes.c0046414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0046414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Failure of a Bronze Pump Impeller by Cavitation Damage
Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.