UHAST条件下WLCSP板级可靠性测试与建模

Liangbiao Chen, Xuejun Fan, Yong Liu
{"title":"UHAST条件下WLCSP板级可靠性测试与建模","authors":"Liangbiao Chen, Xuejun Fan, Yong Liu","doi":"10.1109/ECTC32696.2021.00215","DOIUrl":null,"url":null,"abstract":"Board-level reliability of wafer level chip scale package (WLCSP) is studied by both experiments and numerical modeling in this paper. The test condition is unbiased highly accelerated stress test (UHAST) followed by electrical inspections. One sample failed the test, and failure analysis showed that the failed sample has solder joint degradation and back metal peeling issues. To understand the failure mechanism, nonlinear hygro-thermal-mechanical modeling was performed. To simulate the moisture-induced stresses, the equivalent diffusion expansion coefficient (CDE) method is adopted. Simplification are made for UHAST condition with uniform moisture distribution but without the vapor pressure effects at equilibrium. A total of 7 numerical cases were studied and compared. The simulation results showed that the solder joint plastic strains increases significantly after mounting to the PCB and applying the UHAST conditions. This is mainly due to the CTE and CDE mismatch between the PCB and the device. On the other hand, the peeling stresses at the die and back metal decrease after PCB mounting under UHAST compared to device-only scenario. It is assumed that there is loss of adhesion between the die and the back metal under extreme moisture conditions. Finally, the simulation confirmed that reducing back coating thickness can effectively reduce both the solder joint plastic strains and metal-silicon interfacial stresses, thus providing a feasible solution to enhance the reliability of the package.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing and Modeling of Board Level Reliability of WLCSP under UHAST Conditions\",\"authors\":\"Liangbiao Chen, Xuejun Fan, Yong Liu\",\"doi\":\"10.1109/ECTC32696.2021.00215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Board-level reliability of wafer level chip scale package (WLCSP) is studied by both experiments and numerical modeling in this paper. The test condition is unbiased highly accelerated stress test (UHAST) followed by electrical inspections. One sample failed the test, and failure analysis showed that the failed sample has solder joint degradation and back metal peeling issues. To understand the failure mechanism, nonlinear hygro-thermal-mechanical modeling was performed. To simulate the moisture-induced stresses, the equivalent diffusion expansion coefficient (CDE) method is adopted. Simplification are made for UHAST condition with uniform moisture distribution but without the vapor pressure effects at equilibrium. A total of 7 numerical cases were studied and compared. The simulation results showed that the solder joint plastic strains increases significantly after mounting to the PCB and applying the UHAST conditions. This is mainly due to the CTE and CDE mismatch between the PCB and the device. On the other hand, the peeling stresses at the die and back metal decrease after PCB mounting under UHAST compared to device-only scenario. It is assumed that there is loss of adhesion between the die and the back metal under extreme moisture conditions. Finally, the simulation confirmed that reducing back coating thickness can effectively reduce both the solder joint plastic strains and metal-silicon interfacial stresses, thus providing a feasible solution to enhance the reliability of the package.\",\"PeriodicalId\":351817,\"journal\":{\"name\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC32696.2021.00215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用实验和数值模拟两种方法研究了晶圆级芯片规模封装(WLCSP)的板级可靠性。测试条件是无偏高加速应力测试(UHAST),然后进行电气检查。一个样品测试失败,失效分析表明,失败的样品有焊点退化和背面金属剥落问题。为了了解其破坏机理,进行了非线性水热力学建模。采用等效扩散膨胀系数(CDE)法模拟水致应力。对水分分布均匀但不受平衡蒸汽压影响的UHAST工况进行了简化。对7个数值案例进行了研究和比较。仿真结果表明,在UHAST条件下安装到PCB上后,焊点的塑性应变显著增加。这主要是由于PCB和器件之间的CTE和CDE不匹配。另一方面,与器件安装场景相比,在UHAST下安装PCB后,模具和背面金属的剥离应力减小。假定在极端潮湿的条件下,模具和背面金属之间失去了附着力。最后,通过仿真验证了减小背涂厚度可以有效降低焊点塑性应变和金属硅界面应力,从而为提高封装可靠性提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing and Modeling of Board Level Reliability of WLCSP under UHAST Conditions
Board-level reliability of wafer level chip scale package (WLCSP) is studied by both experiments and numerical modeling in this paper. The test condition is unbiased highly accelerated stress test (UHAST) followed by electrical inspections. One sample failed the test, and failure analysis showed that the failed sample has solder joint degradation and back metal peeling issues. To understand the failure mechanism, nonlinear hygro-thermal-mechanical modeling was performed. To simulate the moisture-induced stresses, the equivalent diffusion expansion coefficient (CDE) method is adopted. Simplification are made for UHAST condition with uniform moisture distribution but without the vapor pressure effects at equilibrium. A total of 7 numerical cases were studied and compared. The simulation results showed that the solder joint plastic strains increases significantly after mounting to the PCB and applying the UHAST conditions. This is mainly due to the CTE and CDE mismatch between the PCB and the device. On the other hand, the peeling stresses at the die and back metal decrease after PCB mounting under UHAST compared to device-only scenario. It is assumed that there is loss of adhesion between the die and the back metal under extreme moisture conditions. Finally, the simulation confirmed that reducing back coating thickness can effectively reduce both the solder joint plastic strains and metal-silicon interfacial stresses, thus providing a feasible solution to enhance the reliability of the package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetically Actuated Test Method for Interfacial Fracture Reliability Assessment nSiP(System in Package) Platform for various module packaging applications IEEE 71st Electronic Components and Technology Conference [Title page] Evaluation of Low-k Integration Integrity Using Shear Testing on Sub-30 Micron Micro-Cu Pillars CoW Package Solution for Improving Thermal Characteristic of TSV-SiP for AI-Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1