Yi He, Xi Yang, Chia-Ming Chang, Haoran Xie, T. Igarashi
{"title":"引导深层神经网络注意力的高效人在环系统","authors":"Yi He, Xi Yang, Chia-Ming Chang, Haoran Xie, T. Igarashi","doi":"10.1145/3581641.3584074","DOIUrl":null,"url":null,"abstract":"Attention guidance is used to address dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to regions specified by users, thereby reducing the effect of co-occurrence bias and improving the transferability and interpretability of a deep neural network (DNN). Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We herein present a new interactive method that allows users to annotate images via simple clicks. Additionally, we identify a novel active learning strategy that can significantly reduce the number of annotations. We conduct both numerical evaluations and a user study to evaluate the proposed system using multiple datasets. Compared with the existing non-active-learning approach, which typically relies on considerable amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can obtain fine-tuned networks on biased datasets in a more time- and cost-efficient manner and offers a more user-friendly experience. Our experimental results show that the proposed system is efficient, reasonable, and reliable. Our code is publicly available at https://github.com/ultratykis/Guiding-DNNs-Attention.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Human-in-the-loop System for Guiding DNNs Attention\",\"authors\":\"Yi He, Xi Yang, Chia-Ming Chang, Haoran Xie, T. Igarashi\",\"doi\":\"10.1145/3581641.3584074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention guidance is used to address dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to regions specified by users, thereby reducing the effect of co-occurrence bias and improving the transferability and interpretability of a deep neural network (DNN). Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We herein present a new interactive method that allows users to annotate images via simple clicks. Additionally, we identify a novel active learning strategy that can significantly reduce the number of annotations. We conduct both numerical evaluations and a user study to evaluate the proposed system using multiple datasets. Compared with the existing non-active-learning approach, which typically relies on considerable amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can obtain fine-tuned networks on biased datasets in a more time- and cost-efficient manner and offers a more user-friendly experience. Our experimental results show that the proposed system is efficient, reasonable, and reliable. Our code is publicly available at https://github.com/ultratykis/Guiding-DNNs-Attention.\",\"PeriodicalId\":118159,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581641.3584074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581641.3584074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Human-in-the-loop System for Guiding DNNs Attention
Attention guidance is used to address dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to regions specified by users, thereby reducing the effect of co-occurrence bias and improving the transferability and interpretability of a deep neural network (DNN). Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We herein present a new interactive method that allows users to annotate images via simple clicks. Additionally, we identify a novel active learning strategy that can significantly reduce the number of annotations. We conduct both numerical evaluations and a user study to evaluate the proposed system using multiple datasets. Compared with the existing non-active-learning approach, which typically relies on considerable amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can obtain fine-tuned networks on biased datasets in a more time- and cost-efficient manner and offers a more user-friendly experience. Our experimental results show that the proposed system is efficient, reasonable, and reliable. Our code is publicly available at https://github.com/ultratykis/Guiding-DNNs-Attention.