{"title":"采用连续波激光结晶的高性能低温p沟道多晶锗薄膜晶体管","authors":"C. Wu, Yi-Shao Li, C. Chou, Huang-Chung Cheng","doi":"10.1109/AM-FPD.2016.7543639","DOIUrl":null,"url":null,"abstract":"The continuous wave laser crystallization (CLC) has been considered as a suitable approach to achieve the high-quality Ge films. In order to further overcome the hole concentration of Ge thin films resulting from the acceptor-like defects, the counter-doping (CD) process with a suitable dose of n-type dopants was employed to convert the carrier type in Ge thin films. In this study, the high-performance low-temperature p-channel polycrystalline-germanium thin-film transistors (TFTs) have been demonstrated via continuous wave laser crystallization and counter doping to exhibit the low subthreshold swing of 432 mV/decade, a superior on/off current ratio of 4×103 and a high hole field-effect mobility of 290 cm2/V-s.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-performance low-temperature p-channel polycrystalline-germanium thin-film transistors via continuous wave laser crystallization\",\"authors\":\"C. Wu, Yi-Shao Li, C. Chou, Huang-Chung Cheng\",\"doi\":\"10.1109/AM-FPD.2016.7543639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous wave laser crystallization (CLC) has been considered as a suitable approach to achieve the high-quality Ge films. In order to further overcome the hole concentration of Ge thin films resulting from the acceptor-like defects, the counter-doping (CD) process with a suitable dose of n-type dopants was employed to convert the carrier type in Ge thin films. In this study, the high-performance low-temperature p-channel polycrystalline-germanium thin-film transistors (TFTs) have been demonstrated via continuous wave laser crystallization and counter doping to exhibit the low subthreshold swing of 432 mV/decade, a superior on/off current ratio of 4×103 and a high hole field-effect mobility of 290 cm2/V-s.\",\"PeriodicalId\":422453,\"journal\":{\"name\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2016.7543639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The continuous wave laser crystallization (CLC) has been considered as a suitable approach to achieve the high-quality Ge films. In order to further overcome the hole concentration of Ge thin films resulting from the acceptor-like defects, the counter-doping (CD) process with a suitable dose of n-type dopants was employed to convert the carrier type in Ge thin films. In this study, the high-performance low-temperature p-channel polycrystalline-germanium thin-film transistors (TFTs) have been demonstrated via continuous wave laser crystallization and counter doping to exhibit the low subthreshold swing of 432 mV/decade, a superior on/off current ratio of 4×103 and a high hole field-effect mobility of 290 cm2/V-s.