{"title":"机器学习算法的计算机辅助设计:片上低功耗实现的定点分类器训练","authors":"H. Albalawi, Yuanning Li, Xin Li","doi":"10.1145/2593069.2593110","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel linear discriminant analysis algorithm, referred to as LDA-FP, to train on-chip classifiers that can be implemented with low-power fixed-point arithmetic with extremely small word length. LDA-FP incorporates the non-idealities (i.e., rounding and overflow) associated with fixed-point arithmetic into the training process so that the resulting classifiers are robust to these non-idealities. Mathematically, LDA-FP is formulated as a mixed integer programming problem that can be efficiently solved by a novel branch-and-bound method proposed in this paper. Our numerical experiments demonstrate that LDA-FP substantially outperforms the conventional approach for the emerging biomedical application of brain computer interface.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer-aided design of machine learning algorithm: Training fixed-point classifier for on-chip low-power implementation\",\"authors\":\"H. Albalawi, Yuanning Li, Xin Li\",\"doi\":\"10.1145/2593069.2593110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel linear discriminant analysis algorithm, referred to as LDA-FP, to train on-chip classifiers that can be implemented with low-power fixed-point arithmetic with extremely small word length. LDA-FP incorporates the non-idealities (i.e., rounding and overflow) associated with fixed-point arithmetic into the training process so that the resulting classifiers are robust to these non-idealities. Mathematically, LDA-FP is formulated as a mixed integer programming problem that can be efficiently solved by a novel branch-and-bound method proposed in this paper. Our numerical experiments demonstrate that LDA-FP substantially outperforms the conventional approach for the emerging biomedical application of brain computer interface.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer-aided design of machine learning algorithm: Training fixed-point classifier for on-chip low-power implementation
In this paper, we propose a novel linear discriminant analysis algorithm, referred to as LDA-FP, to train on-chip classifiers that can be implemented with low-power fixed-point arithmetic with extremely small word length. LDA-FP incorporates the non-idealities (i.e., rounding and overflow) associated with fixed-point arithmetic into the training process so that the resulting classifiers are robust to these non-idealities. Mathematically, LDA-FP is formulated as a mixed integer programming problem that can be efficiently solved by a novel branch-and-bound method proposed in this paper. Our numerical experiments demonstrate that LDA-FP substantially outperforms the conventional approach for the emerging biomedical application of brain computer interface.