结合粒子群算法和肤色的人脸特征定位与分割

LI Zhi-jie
{"title":"结合粒子群算法和肤色的人脸特征定位与分割","authors":"LI Zhi-jie","doi":"10.53555/eijse.v5i3.69","DOIUrl":null,"url":null,"abstract":"A new method using PSO algorithm and skin color for the location and segmentation of  face and facial features is proposed. In the preprocessing stage, segmented face image is  obtained from initial color image. To achieve this goal, PSO algorithm is applied to search for the best face region. Then, based on the edge density of face image, eye region is located with PSO. Then, lips region is located using color component of skin segmentation. Finally, nose region is segmented based on the result of eyes and lips. The Simulation results show that this hybrid method is accurate and effective.   \n ","PeriodicalId":354866,"journal":{"name":"EPH - International Journal of Science And Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOCATION AND SEGMENTATION OF FACIAL FEATURES COMBINING PSO ALGORITHM AND SKIN COLOR\",\"authors\":\"LI Zhi-jie\",\"doi\":\"10.53555/eijse.v5i3.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method using PSO algorithm and skin color for the location and segmentation of  face and facial features is proposed. In the preprocessing stage, segmented face image is  obtained from initial color image. To achieve this goal, PSO algorithm is applied to search for the best face region. Then, based on the edge density of face image, eye region is located with PSO. Then, lips region is located using color component of skin segmentation. Finally, nose region is segmented based on the result of eyes and lips. The Simulation results show that this hybrid method is accurate and effective.   \\n \",\"PeriodicalId\":354866,\"journal\":{\"name\":\"EPH - International Journal of Science And Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPH - International Journal of Science And Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53555/eijse.v5i3.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPH - International Journal of Science And Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53555/eijse.v5i3.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用粒子群算法和肤色对人脸和面部特征进行定位和分割的新方法。在预处理阶段,由初始彩色图像得到分割后的人脸图像。为了实现这一目标,采用粒子群算法搜索最佳人脸区域。然后,基于人脸图像的边缘密度,利用粒子群算法对人眼区域进行定位。然后,利用皮肤分割的颜色分量定位嘴唇区域;最后,根据眼睛和嘴唇的结果对鼻子区域进行分割。仿真结果表明,该混合方法是准确有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LOCATION AND SEGMENTATION OF FACIAL FEATURES COMBINING PSO ALGORITHM AND SKIN COLOR
A new method using PSO algorithm and skin color for the location and segmentation of  face and facial features is proposed. In the preprocessing stage, segmented face image is  obtained from initial color image. To achieve this goal, PSO algorithm is applied to search for the best face region. Then, based on the edge density of face image, eye region is located with PSO. Then, lips region is located using color component of skin segmentation. Finally, nose region is segmented based on the result of eyes and lips. The Simulation results show that this hybrid method is accurate and effective.    
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KNOWLEDGE AND PRACTICES OF FAMILY CAREGIVERS OF TERMINALLY ILL PATIENTS AT THE TAMALE REGIONAL HOSPITAL AI-DRIVEN BIG DATA ANALYTICS: UNVEILING INSIGHTS FOR BUSINESS ADVANCEMENT SAFEGUARDING STABILITY: STRATEGIES FOR ADDRESSING DYNAMIC SYSTEM VARIATIONS IN POWER GRID CYBERSECURITY A COMPREHENSIVE REVIEW ON DATA STREAM MINING TECHNIQUES FOR DATA CLASSIFICATION; AND FUTURE TRENDS SUPERCONDUCTIVITY IN THE QUATERNARY INTERMETALLIC COMPOUND YNI2-XTXB2C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1