协同进化优化中的信息集成与红后动态

Ludo Pagie, P. Hogeweg
{"title":"协同进化优化中的信息集成与红后动态","authors":"Ludo Pagie, P. Hogeweg","doi":"10.1109/CEC.2000.870795","DOIUrl":null,"url":null,"abstract":"Coevolution has been used as optimization technique both successfully and unsuccessfully. Successful optimization shows integration of information at the individual level over many fitness evaluation events and over many generations. Alternative outcomes of the evolutionary process, e.g. red queen dynamics or speciation, prevent such integration. Why coevolution leads to integration of information or to alternative evolutionary outcomes is generally unclear. We study coevolutionary optimization of the density classification task in cellular automata in a spatially explicit, two-species model. We find optimization at the individual level, i.e. evolution of cellular automata that are good density classifiers. However, when we globally mix the populations, which prevents the formation of spatial patterns, we find typical red queen dynamics in which cellular automata classify all cases to a single density class regardless their actual density. Thus, we get different outcomes of the evolutionary process dependent on a small change in the model. We compare the two processes leading to the different outcomes in terms of the diversity of the two populations at the level of the genotype and at the level of the phenotype.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Information integration and red queen dynamics in coevolutionary optimization\",\"authors\":\"Ludo Pagie, P. Hogeweg\",\"doi\":\"10.1109/CEC.2000.870795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coevolution has been used as optimization technique both successfully and unsuccessfully. Successful optimization shows integration of information at the individual level over many fitness evaluation events and over many generations. Alternative outcomes of the evolutionary process, e.g. red queen dynamics or speciation, prevent such integration. Why coevolution leads to integration of information or to alternative evolutionary outcomes is generally unclear. We study coevolutionary optimization of the density classification task in cellular automata in a spatially explicit, two-species model. We find optimization at the individual level, i.e. evolution of cellular automata that are good density classifiers. However, when we globally mix the populations, which prevents the formation of spatial patterns, we find typical red queen dynamics in which cellular automata classify all cases to a single density class regardless their actual density. Thus, we get different outcomes of the evolutionary process dependent on a small change in the model. We compare the two processes leading to the different outcomes in terms of the diversity of the two populations at the level of the genotype and at the level of the phenotype.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

协同进化作为一种优化技术,既有成功的,也有失败的。成功的优化显示了在许多适应度评估事件和许多代的个体水平上的信息集成。进化过程的其他结果,如红后动力学或物种形成,阻止了这种整合。为什么共同进化会导致信息的整合或其他进化结果通常是不清楚的。我们在一个空间显式的两物种模型中研究了细胞自动机密度分类任务的协同进化优化。我们发现在个体层面上的优化,即细胞自动机的进化是很好的密度分类器。然而,当我们在全球范围内混合种群时,这会阻止空间模式的形成,我们发现典型的红皇后动态,其中元胞自动机将所有情况归类为单一密度类,而不管其实际密度。因此,我们得到的进化过程的不同结果取决于模型中的一个小变化。我们在基因型水平和表型水平上比较了导致两个种群多样性不同结果的两个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information integration and red queen dynamics in coevolutionary optimization
Coevolution has been used as optimization technique both successfully and unsuccessfully. Successful optimization shows integration of information at the individual level over many fitness evaluation events and over many generations. Alternative outcomes of the evolutionary process, e.g. red queen dynamics or speciation, prevent such integration. Why coevolution leads to integration of information or to alternative evolutionary outcomes is generally unclear. We study coevolutionary optimization of the density classification task in cellular automata in a spatially explicit, two-species model. We find optimization at the individual level, i.e. evolution of cellular automata that are good density classifiers. However, when we globally mix the populations, which prevents the formation of spatial patterns, we find typical red queen dynamics in which cellular automata classify all cases to a single density class regardless their actual density. Thus, we get different outcomes of the evolutionary process dependent on a small change in the model. We compare the two processes leading to the different outcomes in terms of the diversity of the two populations at the level of the genotype and at the level of the phenotype.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1