{"title":"线性b细胞表位的定量预测","authors":"R. Isea","doi":"10.11648/j.bsi.20170201.11","DOIUrl":null,"url":null,"abstract":"In scientific literature, there are many programs that predict linear B-cell epitopes from a protein sequence. Each program generates multiple B-cell epitopes that can be individually studied. This paper defines a function called that combines results from five different prediction programs concerning the linear B-cell epitopes (ie., BebiPred, EPMLR, BCPred, ABCPred and Emini Prediction) for selecting the best B-cell epitopes. We obtained 17 potential linear B cells consensus epitopes from Glycoprotein E from serotype IV of the dengue virus for exploring new possibilities in vaccine development. The direct implication of the results obtained is to open the way to experimentally validate more epitopes to increase the efficiency of the available treatments against dengue and to explore the methodology in other diseases.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantitative Prediction of Linear B-Cell Epitopes\",\"authors\":\"R. Isea\",\"doi\":\"10.11648/j.bsi.20170201.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In scientific literature, there are many programs that predict linear B-cell epitopes from a protein sequence. Each program generates multiple B-cell epitopes that can be individually studied. This paper defines a function called that combines results from five different prediction programs concerning the linear B-cell epitopes (ie., BebiPred, EPMLR, BCPred, ABCPred and Emini Prediction) for selecting the best B-cell epitopes. We obtained 17 potential linear B cells consensus epitopes from Glycoprotein E from serotype IV of the dengue virus for exploring new possibilities in vaccine development. The direct implication of the results obtained is to open the way to experimentally validate more epitopes to increase the efficiency of the available treatments against dengue and to explore the methodology in other diseases.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.bsi.20170201.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.bsi.20170201.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In scientific literature, there are many programs that predict linear B-cell epitopes from a protein sequence. Each program generates multiple B-cell epitopes that can be individually studied. This paper defines a function called that combines results from five different prediction programs concerning the linear B-cell epitopes (ie., BebiPred, EPMLR, BCPred, ABCPred and Emini Prediction) for selecting the best B-cell epitopes. We obtained 17 potential linear B cells consensus epitopes from Glycoprotein E from serotype IV of the dengue virus for exploring new possibilities in vaccine development. The direct implication of the results obtained is to open the way to experimentally validate more epitopes to increase the efficiency of the available treatments against dengue and to explore the methodology in other diseases.