{"title":"基于HMM和SVM混合分类器的人体步态分类","authors":"D. Das","doi":"10.1109/EDCAV.2015.7060561","DOIUrl":null,"url":null,"abstract":"The paper describes the work on human gait recognition using Hidden Markov Model (HMM), Support Vector Machine (SVM) and Hybridized classifiers (developed using both HMM and SVM). Human gait data obtained from CASIA gait database were segmented to locate major human body part and generate corresponding stick view in order to extract gait features. A total of 25 features were obtained using the length of body parts and major joint angles along with other features and classified using HMM, SVM and Hybridized classifiers. The Hybridized classifier outperforms individual classifiers by 11.25% and 18.14% during training and testing respectively.","PeriodicalId":277103,"journal":{"name":"2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Human gait classification using combined HMM & SVM hybrid classifier\",\"authors\":\"D. Das\",\"doi\":\"10.1109/EDCAV.2015.7060561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the work on human gait recognition using Hidden Markov Model (HMM), Support Vector Machine (SVM) and Hybridized classifiers (developed using both HMM and SVM). Human gait data obtained from CASIA gait database were segmented to locate major human body part and generate corresponding stick view in order to extract gait features. A total of 25 features were obtained using the length of body parts and major joint angles along with other features and classified using HMM, SVM and Hybridized classifiers. The Hybridized classifier outperforms individual classifiers by 11.25% and 18.14% during training and testing respectively.\",\"PeriodicalId\":277103,\"journal\":{\"name\":\"2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV)\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCAV.2015.7060561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCAV.2015.7060561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了隐马尔可夫模型(HMM)、支持向量机(SVM)和混合分类器(HMM和支持向量机共同开发)在人体步态识别方面的工作。对CASIA步态数据库中获取的人体步态数据进行分割,定位人体主要部位并生成相应的手杖视图,提取步态特征。利用人体部位长度和主要关节角等特征得到25个特征,并使用HMM、SVM和Hybridized分类器进行分类。在训练和测试中,杂交分类器的性能分别优于单个分类器11.25%和18.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human gait classification using combined HMM & SVM hybrid classifier
The paper describes the work on human gait recognition using Hidden Markov Model (HMM), Support Vector Machine (SVM) and Hybridized classifiers (developed using both HMM and SVM). Human gait data obtained from CASIA gait database were segmented to locate major human body part and generate corresponding stick view in order to extract gait features. A total of 25 features were obtained using the length of body parts and major joint angles along with other features and classified using HMM, SVM and Hybridized classifiers. The Hybridized classifier outperforms individual classifiers by 11.25% and 18.14% during training and testing respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical modelling for a basic switching unit based on nonlinear plasmonic two mode waveguide Color image noise removal by modified adaptive threshold median filter for RVIN A review on accelerating scientific computations using the Conjugate Gradient method A novel approach for constrained via minimization problem in VLSI channel routing A method for determination of depletion width of single and double gate junction less transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1