Twitter上地理标记行为的大规模实证研究

Binxuan Huang, Kathleen M. Carley
{"title":"Twitter上地理标记行为的大规模实证研究","authors":"Binxuan Huang, Kathleen M. Carley","doi":"10.1145/3341161.3342870","DOIUrl":null,"url":null,"abstract":"Geotagging on social media has become an important proxy for understanding people's mobility and social events. Research that uses geotags to infer public opinions relies on several key assumptions about the behavior of geotagged and non-geotagged users. However, these assumptions have not been fully validated. Lack of understanding the geotagging behavior prohibits people further utilizing it. In this paper, we present an empirical study of geotagging behavior on Twitter based on more than 40 billion tweets collected from 20 million users. There are three main findings that may challenge these common assumptions. Firstly, different groups of users have different geotagging preferences. For example, less than 3% of users speaking in Korean are geotagged, while more than 40% of users speaking in Indonesian use geotags. Secondly, users who report their locations in profiles are more likely to use geotags, which may affects the generability of those location prediction systems on non-geotagged users. Thirdly, strong homophily effect exists in users' geotagging behavior, that users tend to connect to friends with similar geotagging preferences.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A Large-Scale Empirical Study of Geotagging Behavior on Twitter\",\"authors\":\"Binxuan Huang, Kathleen M. Carley\",\"doi\":\"10.1145/3341161.3342870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geotagging on social media has become an important proxy for understanding people's mobility and social events. Research that uses geotags to infer public opinions relies on several key assumptions about the behavior of geotagged and non-geotagged users. However, these assumptions have not been fully validated. Lack of understanding the geotagging behavior prohibits people further utilizing it. In this paper, we present an empirical study of geotagging behavior on Twitter based on more than 40 billion tweets collected from 20 million users. There are three main findings that may challenge these common assumptions. Firstly, different groups of users have different geotagging preferences. For example, less than 3% of users speaking in Korean are geotagged, while more than 40% of users speaking in Indonesian use geotags. Secondly, users who report their locations in profiles are more likely to use geotags, which may affects the generability of those location prediction systems on non-geotagged users. Thirdly, strong homophily effect exists in users' geotagging behavior, that users tend to connect to friends with similar geotagging preferences.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3342870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

社交媒体上的地理标记已经成为了解人们流动性和社会事件的重要代理。使用地理标签来推断公众意见的研究依赖于对地理标签和非地理标签用户行为的几个关键假设。然而,这些假设尚未得到充分证实。缺乏对地理标记行为的理解阻碍了人们进一步使用它。在本文中,我们基于从2000万用户收集的400多亿条推文,对Twitter上的地理标记行为进行了实证研究。有三个主要的发现可能会挑战这些普遍的假设。首先,不同的用户群体有不同的地理标记偏好。例如,不到3%的韩语用户使用地理标签,而超过40%的印尼语用户使用地理标签。其次,在个人资料中报告其位置的用户更有可能使用地理标签,这可能会影响这些位置预测系统对非地理标签用户的可泛化性。第三,用户地理标记行为存在较强的同质效应,用户倾向于与地理标记偏好相似的朋友建立联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Large-Scale Empirical Study of Geotagging Behavior on Twitter
Geotagging on social media has become an important proxy for understanding people's mobility and social events. Research that uses geotags to infer public opinions relies on several key assumptions about the behavior of geotagged and non-geotagged users. However, these assumptions have not been fully validated. Lack of understanding the geotagging behavior prohibits people further utilizing it. In this paper, we present an empirical study of geotagging behavior on Twitter based on more than 40 billion tweets collected from 20 million users. There are three main findings that may challenge these common assumptions. Firstly, different groups of users have different geotagging preferences. For example, less than 3% of users speaking in Korean are geotagged, while more than 40% of users speaking in Indonesian use geotags. Secondly, users who report their locations in profiles are more likely to use geotags, which may affects the generability of those location prediction systems on non-geotagged users. Thirdly, strong homophily effect exists in users' geotagging behavior, that users tend to connect to friends with similar geotagging preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural-Brane: An inductive approach for attributed network embedding Customer Recommendation Based on Profile Matching and Customized Campaigns in On-Line Social Networks Characterizing and Detecting Livestreaming Chatbots Two Decades of Network Science: as seen through the co-authorship network of network scientists Show me your friends, and I will tell you whom you vote for: Predicting voting behavior in social networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1