{"title":"面向片上网络(OCNoC)的过载CDMA互连","authors":"K. E. Ahmed, M. Rizk, Mohammed M. Farag","doi":"10.1109/ReConFig.2016.7857179","DOIUrl":null,"url":null,"abstract":"Networks on Chip (NoCs) have replaced on-chip buses as the paramount communication strategy in large scale Systems-on-Chips (SoCs). Code Division Multiple Access (CDMA) has been proposed as an interconnect fabric that can achieve high throughput and fixed transfer latency due to the CDMA transmission concurrency. Overloaded CDMA Interconnect (OCI) is an architectural evolution of the conventional CDMA interconnects that can double their bandwidth at marginal cost. Employing OCI in CDMA-based NoCs has the potential of providing higher bandwidth at low-power and -area overheads compared to other NoC architectures. Furthermore, fixed latency and predictable performance achieved by the inherent CDMA concurrency can reduce the effort and overhead required to implement QoS. In this work, we advance the Overloaded CDMA interconnect for Network on Chip (OCNoC) dynamic central router. The OCNoC router leverages the overloaded CDMA concept to reduce the overall packet transfer latency and improve the network throughput at a negligible area overhead. Dynamic code assignment is adopted to reduce the decoding complexity and transfer latency and maximize the crossbar utilization. Two OCNoC solutions are advanced, serial and parallel CDMA encoding schemes. The OCNoC central routers are implemented and validated on a Virtex-7 VC709 FPGA kit. Evaluation results show a throughput enhancement up to 142% with a 1.7% variation in packet latencies. Synthesized using a 65 nm ASIC standard cell library, the presented ASIC OCNoC router requires 61% less area per processing element at 81.5% saving in energy dissipation compared to conventional CDMA-based NoCs.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overloaded CDMA interconnect for Network-on-Chip (OCNoC)\",\"authors\":\"K. E. Ahmed, M. Rizk, Mohammed M. Farag\",\"doi\":\"10.1109/ReConFig.2016.7857179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks on Chip (NoCs) have replaced on-chip buses as the paramount communication strategy in large scale Systems-on-Chips (SoCs). Code Division Multiple Access (CDMA) has been proposed as an interconnect fabric that can achieve high throughput and fixed transfer latency due to the CDMA transmission concurrency. Overloaded CDMA Interconnect (OCI) is an architectural evolution of the conventional CDMA interconnects that can double their bandwidth at marginal cost. Employing OCI in CDMA-based NoCs has the potential of providing higher bandwidth at low-power and -area overheads compared to other NoC architectures. Furthermore, fixed latency and predictable performance achieved by the inherent CDMA concurrency can reduce the effort and overhead required to implement QoS. In this work, we advance the Overloaded CDMA interconnect for Network on Chip (OCNoC) dynamic central router. The OCNoC router leverages the overloaded CDMA concept to reduce the overall packet transfer latency and improve the network throughput at a negligible area overhead. Dynamic code assignment is adopted to reduce the decoding complexity and transfer latency and maximize the crossbar utilization. Two OCNoC solutions are advanced, serial and parallel CDMA encoding schemes. The OCNoC central routers are implemented and validated on a Virtex-7 VC709 FPGA kit. Evaluation results show a throughput enhancement up to 142% with a 1.7% variation in packet latencies. Synthesized using a 65 nm ASIC standard cell library, the presented ASIC OCNoC router requires 61% less area per processing element at 81.5% saving in energy dissipation compared to conventional CDMA-based NoCs.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overloaded CDMA interconnect for Network-on-Chip (OCNoC)
Networks on Chip (NoCs) have replaced on-chip buses as the paramount communication strategy in large scale Systems-on-Chips (SoCs). Code Division Multiple Access (CDMA) has been proposed as an interconnect fabric that can achieve high throughput and fixed transfer latency due to the CDMA transmission concurrency. Overloaded CDMA Interconnect (OCI) is an architectural evolution of the conventional CDMA interconnects that can double their bandwidth at marginal cost. Employing OCI in CDMA-based NoCs has the potential of providing higher bandwidth at low-power and -area overheads compared to other NoC architectures. Furthermore, fixed latency and predictable performance achieved by the inherent CDMA concurrency can reduce the effort and overhead required to implement QoS. In this work, we advance the Overloaded CDMA interconnect for Network on Chip (OCNoC) dynamic central router. The OCNoC router leverages the overloaded CDMA concept to reduce the overall packet transfer latency and improve the network throughput at a negligible area overhead. Dynamic code assignment is adopted to reduce the decoding complexity and transfer latency and maximize the crossbar utilization. Two OCNoC solutions are advanced, serial and parallel CDMA encoding schemes. The OCNoC central routers are implemented and validated on a Virtex-7 VC709 FPGA kit. Evaluation results show a throughput enhancement up to 142% with a 1.7% variation in packet latencies. Synthesized using a 65 nm ASIC standard cell library, the presented ASIC OCNoC router requires 61% less area per processing element at 81.5% saving in energy dissipation compared to conventional CDMA-based NoCs.