正则头波下ONR滚回参数滚转的URANS仿真

Zhiguo Zhang, Lixiang Guo, Shuang Wang, Yecheng Yuan, Can Chen
{"title":"正则头波下ONR滚回参数滚转的URANS仿真","authors":"Zhiguo Zhang, Lixiang Guo, Shuang Wang, Yecheng Yuan, Can Chen","doi":"10.1115/omae2019-96425","DOIUrl":null,"url":null,"abstract":"\n In this paper, an in-house CFD code HUST-Ship is used for the numerical simulation of parametric rolling phenomena of ONR Tumblehome in regular head wave. Preliminary resistance and roll decay simulations at Fr = 0.2 were carried out and compared with existed INSEAN experimental data. Following, three DOFs’ ship motions in regular head wave with an initial roll angle of 30 degrees was calculated to examine the possibility of occurrence of parametric rolling. Finally, a simulation without initial roll disturbance was performed to investigate its influence to the steady roll amplitude. By conducting fast Fourier transform of the time history of motions, forces and moments, the characteristics are analyzed and co-related with wave frequency. Results can be concluded that the in-house code has the ability to perform the parametric rolling simulation, and that the final steady roll amplitude is not affected by the initial disturbance. In addition, heave and pitch motions are dominantly affected by wave characteristic, roll frequency is about half that of wave, and that forces and moments in x direction exhibit high-order non-linearity.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"URANS Simulation of ONR Tumblehome Parametric Rolling in Regular Head Waves\",\"authors\":\"Zhiguo Zhang, Lixiang Guo, Shuang Wang, Yecheng Yuan, Can Chen\",\"doi\":\"10.1115/omae2019-96425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, an in-house CFD code HUST-Ship is used for the numerical simulation of parametric rolling phenomena of ONR Tumblehome in regular head wave. Preliminary resistance and roll decay simulations at Fr = 0.2 were carried out and compared with existed INSEAN experimental data. Following, three DOFs’ ship motions in regular head wave with an initial roll angle of 30 degrees was calculated to examine the possibility of occurrence of parametric rolling. Finally, a simulation without initial roll disturbance was performed to investigate its influence to the steady roll amplitude. By conducting fast Fourier transform of the time history of motions, forces and moments, the characteristics are analyzed and co-related with wave frequency. Results can be concluded that the in-house code has the ability to perform the parametric rolling simulation, and that the final steady roll amplitude is not affected by the initial disturbance. In addition, heave and pitch motions are dominantly affected by wave characteristic, roll frequency is about half that of wave, and that forces and moments in x direction exhibit high-order non-linearity.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用内部CFD程序HUST-Ship对ONR翻滚屋在规则头波下的参数化滚转现象进行了数值模拟。在Fr = 0.2时进行了初步的阻力和滚转衰减模拟,并与已有的INSEAN实验数据进行了比较。接着,计算了初始横摇角为30度的规则头波中三自由度的船舶运动,考察了参数横摇发生的可能性。最后进行了无初始横摇扰动的仿真,研究了初始横摇扰动对稳态横摇幅值的影响。通过对运动、力和矩的时程进行快速傅立叶变换,分析了这些特性与波频的相关关系。结果表明,内部代码具有进行参数化滚转模拟的能力,且最终稳态滚转振幅不受初始扰动的影响。此外,垂荡和俯仰运动主要受波动特性的影响,横摇频率约为波动频率的一半,x方向的力和力矩表现出高阶非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
URANS Simulation of ONR Tumblehome Parametric Rolling in Regular Head Waves
In this paper, an in-house CFD code HUST-Ship is used for the numerical simulation of parametric rolling phenomena of ONR Tumblehome in regular head wave. Preliminary resistance and roll decay simulations at Fr = 0.2 were carried out and compared with existed INSEAN experimental data. Following, three DOFs’ ship motions in regular head wave with an initial roll angle of 30 degrees was calculated to examine the possibility of occurrence of parametric rolling. Finally, a simulation without initial roll disturbance was performed to investigate its influence to the steady roll amplitude. By conducting fast Fourier transform of the time history of motions, forces and moments, the characteristics are analyzed and co-related with wave frequency. Results can be concluded that the in-house code has the ability to perform the parametric rolling simulation, and that the final steady roll amplitude is not affected by the initial disturbance. In addition, heave and pitch motions are dominantly affected by wave characteristic, roll frequency is about half that of wave, and that forces and moments in x direction exhibit high-order non-linearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1