{"title":"机器人控制器的开放式架构","authors":"T. Borangiu, F. Anton, S. Anton","doi":"10.1109/RAAD.2010.5524587","DOIUrl":null,"url":null,"abstract":"The paper discusses a generic, open architecture for industrial or non-industrial robot controllers allowing system designers and robot manufacturers to develop rapid deployment automation solutions for particular mechanics of robot manipulators. The paper describes a multiple-axis open controller design for a mobile AGV platform carrying a robotic arm, with inclination control to provide horizontal alignment in any terrain configuration. The navigation and locating of the mobile robot platform, the motion control of the robotic arm, as well as monitoring, learning, program editing, debugging and execution are embedded in a multiprocessor system developed around a Motion Control solution for which a structured programming language was developed. A strongly coupled multi-processor architecture embedding model learning, control and man-machine GUI functionalities is described both as hardware implementing and basic software system design (RTOS, multitasking and operating modes). Experimental results are reported for the motion control of the 5-d.o.f. robot arm.","PeriodicalId":104308,"journal":{"name":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Open architecture for robot controllers\",\"authors\":\"T. Borangiu, F. Anton, S. Anton\",\"doi\":\"10.1109/RAAD.2010.5524587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses a generic, open architecture for industrial or non-industrial robot controllers allowing system designers and robot manufacturers to develop rapid deployment automation solutions for particular mechanics of robot manipulators. The paper describes a multiple-axis open controller design for a mobile AGV platform carrying a robotic arm, with inclination control to provide horizontal alignment in any terrain configuration. The navigation and locating of the mobile robot platform, the motion control of the robotic arm, as well as monitoring, learning, program editing, debugging and execution are embedded in a multiprocessor system developed around a Motion Control solution for which a structured programming language was developed. A strongly coupled multi-processor architecture embedding model learning, control and man-machine GUI functionalities is described both as hardware implementing and basic software system design (RTOS, multitasking and operating modes). Experimental results are reported for the motion control of the 5-d.o.f. robot arm.\",\"PeriodicalId\":104308,\"journal\":{\"name\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAAD.2010.5524587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2010.5524587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper discusses a generic, open architecture for industrial or non-industrial robot controllers allowing system designers and robot manufacturers to develop rapid deployment automation solutions for particular mechanics of robot manipulators. The paper describes a multiple-axis open controller design for a mobile AGV platform carrying a robotic arm, with inclination control to provide horizontal alignment in any terrain configuration. The navigation and locating of the mobile robot platform, the motion control of the robotic arm, as well as monitoring, learning, program editing, debugging and execution are embedded in a multiprocessor system developed around a Motion Control solution for which a structured programming language was developed. A strongly coupled multi-processor architecture embedding model learning, control and man-machine GUI functionalities is described both as hardware implementing and basic software system design (RTOS, multitasking and operating modes). Experimental results are reported for the motion control of the 5-d.o.f. robot arm.