基于深度强化学习的云制造随机到达任务动态调度

Leyao Chen, Longfei Zhou, Muer Zhou, Xilong Yu, Yipeng Zhu, Wenbo Song, Zixuan Lu, Jiayin Li
{"title":"基于深度强化学习的云制造随机到达任务动态调度","authors":"Leyao Chen, Longfei Zhou, Muer Zhou, Xilong Yu, Yipeng Zhu, Wenbo Song, Zixuan Lu, Jiayin Li","doi":"10.1109/UV56588.2022.10185485","DOIUrl":null,"url":null,"abstract":"Compared with the stable orders of traditional manufacturing, cloud manufacturing (CMfg) fulfilled with masses of random orders, so the CMfg server needs an algorithm with low time and space complexity to prevent the server from crashing due to excessive instantaneous data. Besides, the random changes of manufacturing resources and service must be considered when establishing a scheduling model for CMfg. To solve this problem, we propose an adaptive Deep Q-Networks (ADQN) method with a resizable network that converts cloud manufacturing scheduling problems with multiple objectives into specific reinforcement learning goal and can adapt to changing environments. Our experimental results show that ADQN is comparable to other real-time scheduling methods, the average subtask completion time and the standard deviation of occupation obtained by ADQN keep at a low level.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Dynamic Scheduling of Random Arrival Tasks in Cloud Manufacturing\",\"authors\":\"Leyao Chen, Longfei Zhou, Muer Zhou, Xilong Yu, Yipeng Zhu, Wenbo Song, Zixuan Lu, Jiayin Li\",\"doi\":\"10.1109/UV56588.2022.10185485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the stable orders of traditional manufacturing, cloud manufacturing (CMfg) fulfilled with masses of random orders, so the CMfg server needs an algorithm with low time and space complexity to prevent the server from crashing due to excessive instantaneous data. Besides, the random changes of manufacturing resources and service must be considered when establishing a scheduling model for CMfg. To solve this problem, we propose an adaptive Deep Q-Networks (ADQN) method with a resizable network that converts cloud manufacturing scheduling problems with multiple objectives into specific reinforcement learning goal and can adapt to changing environments. Our experimental results show that ADQN is comparable to other real-time scheduling methods, the average subtask completion time and the standard deviation of occupation obtained by ADQN keep at a low level.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统制造的稳定订单相比,云制造(cloud manufacturing, CMfg)处理的是大量随机订单,因此CMfg服务器需要一种低时间和空间复杂度的算法,以防止服务器因过多的瞬时数据而崩溃。此外,在建立制造制造调度模型时,必须考虑制造资源和服务的随机变化。为了解决这一问题,我们提出了一种自适应深度q网络(ADQN)方法,该方法具有可调整大小的网络,将具有多个目标的云制造调度问题转换为特定的强化学习目标,并且可以适应不断变化的环境。实验结果表明,ADQN可与其他实时调度方法相媲美,获得的子任务平均完成时间和占用标准差保持在较低水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning Based Dynamic Scheduling of Random Arrival Tasks in Cloud Manufacturing
Compared with the stable orders of traditional manufacturing, cloud manufacturing (CMfg) fulfilled with masses of random orders, so the CMfg server needs an algorithm with low time and space complexity to prevent the server from crashing due to excessive instantaneous data. Besides, the random changes of manufacturing resources and service must be considered when establishing a scheduling model for CMfg. To solve this problem, we propose an adaptive Deep Q-Networks (ADQN) method with a resizable network that converts cloud manufacturing scheduling problems with multiple objectives into specific reinforcement learning goal and can adapt to changing environments. Our experimental results show that ADQN is comparable to other real-time scheduling methods, the average subtask completion time and the standard deviation of occupation obtained by ADQN keep at a low level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1