{"title":"增量测试模式生成","authors":"Sang-Hoon Song, L. Kinney","doi":"10.1109/VTEST.1993.313353","DOIUrl":null,"url":null,"abstract":"Discusses a test pattern generation (TPG) algorithm for single stuck-at faults in combinational logic circuits. Current TPG systems generate a test vector for fault F/sub i+1/ independently of the computation previously done for faults F/sub 1/, F/sub 2/, . . ., F/sub i/. The algorithm ITPG, generates a test vector for fault F/sub i+1/ by starting with (inheriting) the test vector for fault F/sub i/. A new test vector is generated from inherited values by gradually changing the inherited values. The inherited values may partially activate a fault and propagate the fault signal. Normally, this reduces the number of decision steps and backtracks in the second search. Experimental results for well-known benchmark circuits show that ITPG is very efficient with a small backtrack limit; in combination with other algorithms, it is very efficient for arbitrary backtrack limits.<<ETX>>","PeriodicalId":283218,"journal":{"name":"Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incremental test pattern generation\",\"authors\":\"Sang-Hoon Song, L. Kinney\",\"doi\":\"10.1109/VTEST.1993.313353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discusses a test pattern generation (TPG) algorithm for single stuck-at faults in combinational logic circuits. Current TPG systems generate a test vector for fault F/sub i+1/ independently of the computation previously done for faults F/sub 1/, F/sub 2/, . . ., F/sub i/. The algorithm ITPG, generates a test vector for fault F/sub i+1/ by starting with (inheriting) the test vector for fault F/sub i/. A new test vector is generated from inherited values by gradually changing the inherited values. The inherited values may partially activate a fault and propagate the fault signal. Normally, this reduces the number of decision steps and backtracks in the second search. Experimental results for well-known benchmark circuits show that ITPG is very efficient with a small backtrack limit; in combination with other algorithms, it is very efficient for arbitrary backtrack limits.<<ETX>>\",\"PeriodicalId\":283218,\"journal\":{\"name\":\"Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.1993.313353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.1993.313353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discusses a test pattern generation (TPG) algorithm for single stuck-at faults in combinational logic circuits. Current TPG systems generate a test vector for fault F/sub i+1/ independently of the computation previously done for faults F/sub 1/, F/sub 2/, . . ., F/sub i/. The algorithm ITPG, generates a test vector for fault F/sub i+1/ by starting with (inheriting) the test vector for fault F/sub i/. A new test vector is generated from inherited values by gradually changing the inherited values. The inherited values may partially activate a fault and propagate the fault signal. Normally, this reduces the number of decision steps and backtracks in the second search. Experimental results for well-known benchmark circuits show that ITPG is very efficient with a small backtrack limit; in combination with other algorithms, it is very efficient for arbitrary backtrack limits.<>