SAC305焊点在谐波和随机振动下的机械疲劳评价

J. Libot, L. Arnaud, O. Dalverny, J. Alexis, P. Milesi, F. Dulondel
{"title":"SAC305焊点在谐波和随机振动下的机械疲劳评价","authors":"J. Libot, L. Arnaud, O. Dalverny, J. Alexis, P. Milesi, F. Dulondel","doi":"10.1109/EUROSIME.2016.7463294","DOIUrl":null,"url":null,"abstract":"Vibration-induced solder joint fatigue is a main reliability concern for aerospace and military industries whose electronic equipment used in the field is required to remain functional under harsh loadings. Due to the RoHS directive which eventually will prevent lead from being utilized in electronic systems, there is a need for a better understanding of lead-free mechanical behavior under vibration conditions. This study reports the durability of Sn3.0Ag0.5Cu (SAC305) solder joints subjected to harmonic solicitations at three specific temperatures (-55°C, 20°C and 105°C) and random vibrations at ambient temperature (20°C). A test assembly was designed and consisted in a single daisy-chained 1152 I/O ball grid array (FBGA1152) package assembled on a flame retardant (FR-4) printed circuit board (PCB). The vibration levels were imposed by a controlled deflection at the center of the board at its natural frequency. The electric continuity was monitored to determine the number of cycles to failure of each sample. Mode shape measurements with a scanning vibrometer were also conducted and correlated with finite element analysis (FEA) to ensure accurate calculation of strain within the critical solder balls at the corners of the component. The failed specimens were then cross-sectioned in order to determine failure modes. A comparison of SAC305 durability with SnPb36Ag2 solder is given, along with a set of lifetime measurements for two complementary assemblies: 68 I/O Leadless Chip Carrier (LCC68) and 324 I/O Plastic Ball Grid Array (PBGA324). For the tested harmonic vibration levels, SAC305 outperforms SnPb36Ag2. Furthermore, the effect of temperature on the mechanical durability of SAC305 appears to be minor. Failure analysis pointed out different failure modes on PCB and component side, along with pad cratering and copper trace failures. FEA calculations allows the determination of the SAC305 fatigue curve to estimate the high cycle fatigue (HCF) behavior of SAC305 solder under harmonic vibrations. The random vibrations durability of SAC305 solder was assessed using the same test assembly (FBGA1152) which was subjected to three different levels of Power Spectral Density (PSD) at 20°C. The random vibrations tests were conducted within a frequency band ranging from 500 Hz to 900 Hz around the natural frequency. The chosen PSD levels applied were 0.04, 0.10 and 0.20 g2/Hz. Using power-law fitting, the results give a first estimation of the durability of SAC305 solder joints subjected to random vibrations.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mechanical fatigue assessment of SAC305 solder joints under harmonic and random vibrations\",\"authors\":\"J. Libot, L. Arnaud, O. Dalverny, J. Alexis, P. Milesi, F. Dulondel\",\"doi\":\"10.1109/EUROSIME.2016.7463294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration-induced solder joint fatigue is a main reliability concern for aerospace and military industries whose electronic equipment used in the field is required to remain functional under harsh loadings. Due to the RoHS directive which eventually will prevent lead from being utilized in electronic systems, there is a need for a better understanding of lead-free mechanical behavior under vibration conditions. This study reports the durability of Sn3.0Ag0.5Cu (SAC305) solder joints subjected to harmonic solicitations at three specific temperatures (-55°C, 20°C and 105°C) and random vibrations at ambient temperature (20°C). A test assembly was designed and consisted in a single daisy-chained 1152 I/O ball grid array (FBGA1152) package assembled on a flame retardant (FR-4) printed circuit board (PCB). The vibration levels were imposed by a controlled deflection at the center of the board at its natural frequency. The electric continuity was monitored to determine the number of cycles to failure of each sample. Mode shape measurements with a scanning vibrometer were also conducted and correlated with finite element analysis (FEA) to ensure accurate calculation of strain within the critical solder balls at the corners of the component. The failed specimens were then cross-sectioned in order to determine failure modes. A comparison of SAC305 durability with SnPb36Ag2 solder is given, along with a set of lifetime measurements for two complementary assemblies: 68 I/O Leadless Chip Carrier (LCC68) and 324 I/O Plastic Ball Grid Array (PBGA324). For the tested harmonic vibration levels, SAC305 outperforms SnPb36Ag2. Furthermore, the effect of temperature on the mechanical durability of SAC305 appears to be minor. Failure analysis pointed out different failure modes on PCB and component side, along with pad cratering and copper trace failures. FEA calculations allows the determination of the SAC305 fatigue curve to estimate the high cycle fatigue (HCF) behavior of SAC305 solder under harmonic vibrations. The random vibrations durability of SAC305 solder was assessed using the same test assembly (FBGA1152) which was subjected to three different levels of Power Spectral Density (PSD) at 20°C. The random vibrations tests were conducted within a frequency band ranging from 500 Hz to 900 Hz around the natural frequency. The chosen PSD levels applied were 0.04, 0.10 and 0.20 g2/Hz. Using power-law fitting, the results give a first estimation of the durability of SAC305 solder joints subjected to random vibrations.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

振动引起的焊点疲劳是航空航天和军事工业中主要的可靠性问题,这些工业中使用的电子设备需要在恶劣的负载下保持功能。由于RoHS指令最终将防止铅在电子系统中使用,因此需要更好地了解振动条件下的无铅机械行为。本研究报告了Sn3.0Ag0.5Cu (SAC305)焊点在三种特定温度(-55°C, 20°C和105°C)和环境温度(20°C)随机振动下的谐波振动的耐久性。设计了一个测试组件,该组件由一个单一的菊链1152 I/O球栅阵列(FBGA1152)封装组成,该封装组装在阻燃(FR-4)印刷电路板(PCB)上。振动水平是由在板的中心以其固有频率控制的偏转施加的。监测电连续性以确定每个样品失效的循环次数。利用扫描式测振仪进行了模态振型测量,并与有限元分析(FEA)相关联,以确保精确计算组件拐角处关键焊球内的应变。然后对破坏试样进行横截面以确定破坏模式。给出了SAC305耐久性与SnPb36Ag2焊料的比较,以及两种互补组件的一组寿命测量:68 I/O无铅芯片载体(LCC68)和324 I/O塑料球栅阵列(PBGA324)。对于测试的谐波振动水平,SAC305优于SnPb36Ag2。此外,温度对SAC305机械耐久性的影响似乎很小。失效分析指出了PCB和元件侧的不同失效模式,以及焊盘撞击和铜迹失效。FEA计算可以确定SAC305的疲劳曲线,以估计SAC305焊料在谐波振动下的高周疲劳(HCF)行为。使用相同的测试组件(FBGA1152)评估SAC305焊料的随机振动耐久性,该测试组件在20°C下承受三种不同水平的功率谱密度(PSD)。随机振动测试在固有频率附近500至900赫兹的频带内进行。所选择的PSD水平分别为0.04、0.10和0.20 g2/Hz。使用幂律拟合,结果给出了SAC305焊点在随机振动下的耐久性的初步估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical fatigue assessment of SAC305 solder joints under harmonic and random vibrations
Vibration-induced solder joint fatigue is a main reliability concern for aerospace and military industries whose electronic equipment used in the field is required to remain functional under harsh loadings. Due to the RoHS directive which eventually will prevent lead from being utilized in electronic systems, there is a need for a better understanding of lead-free mechanical behavior under vibration conditions. This study reports the durability of Sn3.0Ag0.5Cu (SAC305) solder joints subjected to harmonic solicitations at three specific temperatures (-55°C, 20°C and 105°C) and random vibrations at ambient temperature (20°C). A test assembly was designed and consisted in a single daisy-chained 1152 I/O ball grid array (FBGA1152) package assembled on a flame retardant (FR-4) printed circuit board (PCB). The vibration levels were imposed by a controlled deflection at the center of the board at its natural frequency. The electric continuity was monitored to determine the number of cycles to failure of each sample. Mode shape measurements with a scanning vibrometer were also conducted and correlated with finite element analysis (FEA) to ensure accurate calculation of strain within the critical solder balls at the corners of the component. The failed specimens were then cross-sectioned in order to determine failure modes. A comparison of SAC305 durability with SnPb36Ag2 solder is given, along with a set of lifetime measurements for two complementary assemblies: 68 I/O Leadless Chip Carrier (LCC68) and 324 I/O Plastic Ball Grid Array (PBGA324). For the tested harmonic vibration levels, SAC305 outperforms SnPb36Ag2. Furthermore, the effect of temperature on the mechanical durability of SAC305 appears to be minor. Failure analysis pointed out different failure modes on PCB and component side, along with pad cratering and copper trace failures. FEA calculations allows the determination of the SAC305 fatigue curve to estimate the high cycle fatigue (HCF) behavior of SAC305 solder under harmonic vibrations. The random vibrations durability of SAC305 solder was assessed using the same test assembly (FBGA1152) which was subjected to three different levels of Power Spectral Density (PSD) at 20°C. The random vibrations tests were conducted within a frequency band ranging from 500 Hz to 900 Hz around the natural frequency. The chosen PSD levels applied were 0.04, 0.10 and 0.20 g2/Hz. Using power-law fitting, the results give a first estimation of the durability of SAC305 solder joints subjected to random vibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and modelling of a digital MEMS varactor for wireless applications Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach Hybrid dynamic modeling of V-shaped thermal micro-actuators A systematic approach for reliability assessment of electrolytic capacitor-free LED drivers Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1