使用主动外观模型的性别和面部表情级联分类

Yunus Saatci, C. Town
{"title":"使用主动外观模型的性别和面部表情级联分类","authors":"Yunus Saatci, C. Town","doi":"10.1109/FGR.2006.29","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to recognising the gender and expression of face images by means of active appearance models (AAM). Features extracted by a trained AAM are used to construct support vector machine (SVM) classifiers for 4 elementary emotional states (happy, angry, sad, neutral). These classifiers are arranged into a cascade structure in order to optimise overall recognition performance. Furthermore, it is shown how performance can be further improved by first classifying the gender of the face images using an SVM trained in a similar manner. Both gender-specific expression classification and expression-specific gender classification cascades are considered, with the former yielding better recognition performance. We conclude that there are gender-specific differences in the appearance of facial expressions that can be exploited for automated recognition, and that cascades are an efficient and effective way of performing multi-class recognition of facial expressions","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":"{\"title\":\"Cascaded classification of gender and facial expression using active appearance models\",\"authors\":\"Yunus Saatci, C. Town\",\"doi\":\"10.1109/FGR.2006.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to recognising the gender and expression of face images by means of active appearance models (AAM). Features extracted by a trained AAM are used to construct support vector machine (SVM) classifiers for 4 elementary emotional states (happy, angry, sad, neutral). These classifiers are arranged into a cascade structure in order to optimise overall recognition performance. Furthermore, it is shown how performance can be further improved by first classifying the gender of the face images using an SVM trained in a similar manner. Both gender-specific expression classification and expression-specific gender classification cascades are considered, with the former yielding better recognition performance. We conclude that there are gender-specific differences in the appearance of facial expressions that can be exploited for automated recognition, and that cascades are an efficient and effective way of performing multi-class recognition of facial expressions\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"159\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

摘要

本文提出了一种基于主动外观模型(AAM)的人脸图像性别和表情识别方法。使用训练好的AAM提取的特征构建支持向量机(SVM)分类器,用于4种基本情绪状态(快乐、愤怒、悲伤、中性)。这些分类器排列成级联结构,以优化整体识别性能。此外,还展示了如何通过使用以类似方式训练的支持向量机首先对人脸图像的性别进行分类来进一步提高性能。基于性别的表达分类和基于表达的性别分类级联都被考虑在内,前者具有更好的识别性能。我们得出的结论是,面部表情的外观存在性别差异,可以用于自动识别,并且级联是执行多类别面部表情识别的高效和有效的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascaded classification of gender and facial expression using active appearance models
This paper presents an approach to recognising the gender and expression of face images by means of active appearance models (AAM). Features extracted by a trained AAM are used to construct support vector machine (SVM) classifiers for 4 elementary emotional states (happy, angry, sad, neutral). These classifiers are arranged into a cascade structure in order to optimise overall recognition performance. Furthermore, it is shown how performance can be further improved by first classifying the gender of the face images using an SVM trained in a similar manner. Both gender-specific expression classification and expression-specific gender classification cascades are considered, with the former yielding better recognition performance. We conclude that there are gender-specific differences in the appearance of facial expressions that can be exploited for automated recognition, and that cascades are an efficient and effective way of performing multi-class recognition of facial expressions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1