探索资源感知深度神经网络加速器与体系结构设计

Baoting Li, Longjun Liu, Jiahua Liang, Hongbin Sun, Li Geng, Nanning Zheng
{"title":"探索资源感知深度神经网络加速器与体系结构设计","authors":"Baoting Li, Longjun Liu, Jiahua Liang, Hongbin Sun, Li Geng, Nanning Zheng","doi":"10.1109/ICDSP.2018.8631853","DOIUrl":null,"url":null,"abstract":"Due to the ever-increasing number of neural networks(NNs) connections and parameters, computation on neural networks is becoming both power hankering and memory intensive. In this paper, we propose a sparse neural networks accelerator to improve memory resource utilization and improve power efficiency. In contrast to prior works, we introduce a highly integrated software and hardware co-design technique that combines resource-aware software compression algorithms and specialized hardware inference engine in the accelerator. Compared with other designs, our design can compress parameters by 90× and substantially improve storage resource utilization, performance (6.9×) and power (1.2×) for NN accelerators.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Resource-Aware Deep Neural Network Accelerator and Architecture Design\",\"authors\":\"Baoting Li, Longjun Liu, Jiahua Liang, Hongbin Sun, Li Geng, Nanning Zheng\",\"doi\":\"10.1109/ICDSP.2018.8631853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the ever-increasing number of neural networks(NNs) connections and parameters, computation on neural networks is becoming both power hankering and memory intensive. In this paper, we propose a sparse neural networks accelerator to improve memory resource utilization and improve power efficiency. In contrast to prior works, we introduce a highly integrated software and hardware co-design technique that combines resource-aware software compression algorithms and specialized hardware inference engine in the accelerator. Compared with other designs, our design can compress parameters by 90× and substantially improve storage resource utilization, performance (6.9×) and power (1.2×) for NN accelerators.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于神经网络连接和参数的不断增加,神经网络的计算变得越来越耗能和内存密集型。在本文中,我们提出了一个稀疏神经网络加速器,以提高内存资源利用率和提高功率效率。与先前的工作相比,我们引入了一种高度集成的软件和硬件协同设计技术,该技术将资源感知软件压缩算法和专用硬件推理引擎结合在加速器中。与其他设计相比,我们的设计可以将参数压缩90倍,大大提高了NN加速器的存储资源利用率、性能(6.9倍)和功耗(1.2倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Resource-Aware Deep Neural Network Accelerator and Architecture Design
Due to the ever-increasing number of neural networks(NNs) connections and parameters, computation on neural networks is becoming both power hankering and memory intensive. In this paper, we propose a sparse neural networks accelerator to improve memory resource utilization and improve power efficiency. In contrast to prior works, we introduce a highly integrated software and hardware co-design technique that combines resource-aware software compression algorithms and specialized hardware inference engine in the accelerator. Compared with other designs, our design can compress parameters by 90× and substantially improve storage resource utilization, performance (6.9×) and power (1.2×) for NN accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1