WassersteinSpace上的集合黎曼数据同化

S. Tamang, A. Ebtehaj, P. V. van Leeuwen, Dongmian Zou, Gilad Lerman
{"title":"WassersteinSpace上的集合黎曼数据同化","authors":"S. Tamang, A. Ebtehaj, P. V. van Leeuwen, Dongmian Zou, Gilad Lerman","doi":"10.5194/NPG-2021-11","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations – enabling to formally penalize geophysical biases in state-space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are highlighted compared to the classic variational and filtering data assimilation approaches under systematic and random errors.\n","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ensemble Riemannian Data Assimilation over the Wasserstein\\nSpace\",\"authors\":\"S. Tamang, A. Ebtehaj, P. V. van Leeuwen, Dongmian Zou, Gilad Lerman\",\"doi\":\"10.5194/NPG-2021-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations – enabling to formally penalize geophysical biases in state-space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are highlighted compared to the classic variational and filtering data assimilation approaches under systematic and random errors.\\n\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/NPG-2021-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/NPG-2021-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要在本文中,我们提出了一个集成数据同化范式在黎曼流形配备了瓦瑟斯坦度量。与欧几里得空间中的欧拉误差惩罚不同,Wasserstein度量可以捕获背景状态和观测值的平方可积概率分布形状之间的平移和差异,从而能够在非高斯分布的状态空间中正式惩罚地球物理偏差。将该方法应用于耗散和混沌演化动力学,并与系统误差和随机误差下的经典变分和滤波数据同化方法相比,突出了其潜在的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Riemannian Data Assimilation over the Wasserstein Space
Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations – enabling to formally penalize geophysical biases in state-space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are highlighted compared to the classic variational and filtering data assimilation approaches under systematic and random errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1