医疗保健中的隐私保护联合学习

Sunghwan Moon, Won Hee Lee
{"title":"医疗保健中的隐私保护联合学习","authors":"Sunghwan Moon, Won Hee Lee","doi":"10.1109/ICEIC57457.2023.10049966","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Privacy-Preserving Federated Learning in Healthcare\",\"authors\":\"Sunghwan Moon, Won Hee Lee\",\"doi\":\"10.1109/ICEIC57457.2023.10049966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.\",\"PeriodicalId\":373752,\"journal\":{\"name\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC57457.2023.10049966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

联邦学习(FL)在医疗保健领域受到了极大的关注,主要是因为它在构建机器学习(ML)模型时具有分散和协作的性质。多年来,FL方法已成功应用于增强医疗ML应用中的隐私保护。本研究旨在回顾目前在医疗保健领域的应用,为未来落地FL应用提供参考。我们确定了FL在关键医疗保健领域的新兴应用,包括COVID-19、脑肿瘤分割、乳房x光检查、睡眠质量预测和智能医疗保健系统。最后,我们讨论了联邦设置中的隐私问题,并提供了当前增加FL数据隐私功能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy-Preserving Federated Learning in Healthcare
Federated learning (FL) has received great attention in healthcare primarily due to its decentralized, collaborative nature of building a machine learning (ML) model. Over the years, the FL approach has been successfully applied for enhancing privacy preservation in medical ML applications. This study aims to review prevailing applications in healthcare for the future landing FL application. We identified the emerging applications of FL in key healthcare domains, including COVID-19, brain tumor segmentation, mammogram, sleep quality prediction, and smart healthcare system. Finally, we discuss privacy concerns in federated setting and provide current methods to increase the data privacy capabilities of FL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1