简单建筑能源系统的建模与仿真

V. Harish, Arun Kumar
{"title":"简单建筑能源系统的建模与仿真","authors":"V. Harish, Arun Kumar","doi":"10.1109/MICROCOM.2016.7522473","DOIUrl":null,"url":null,"abstract":"A mathematical model for building energy systems (BES) is developed which maps the energy transfer processes occurring within the building space. Construction elements making up the building space and the heating and cooling plant responsible for thermal comfort of the occupants are also modeled. This involved quantification of linkages between temperature and humidity conditions and level occupancy (number of occupants, occupancy schedule) within building space. Thermal energy transfer processes of conductive, convective, and radiative heat balance for each surface of the construction elements and a convective heat balance for the building space are modeled. Building space zone is modelled for both sensible and latent thermal energy transfer. State space approach is used to model the building construction elements such as walls, with the parameters estimated using a nonlinear time invariant optimization algorithm with constraints. HVAC system is modelled with a control valve, heat emitter, occupancy driven ventilation controlled through a PID controller. A complete building energy system (BES) modeling procedure based on first principles of building physics is presented. BES model is simulated using MATLAB/Simulink and the results depict the temperature variations within the building space at less computational times.","PeriodicalId":118902,"journal":{"name":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling and simulation of a simple building energy system\",\"authors\":\"V. Harish, Arun Kumar\",\"doi\":\"10.1109/MICROCOM.2016.7522473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model for building energy systems (BES) is developed which maps the energy transfer processes occurring within the building space. Construction elements making up the building space and the heating and cooling plant responsible for thermal comfort of the occupants are also modeled. This involved quantification of linkages between temperature and humidity conditions and level occupancy (number of occupants, occupancy schedule) within building space. Thermal energy transfer processes of conductive, convective, and radiative heat balance for each surface of the construction elements and a convective heat balance for the building space are modeled. Building space zone is modelled for both sensible and latent thermal energy transfer. State space approach is used to model the building construction elements such as walls, with the parameters estimated using a nonlinear time invariant optimization algorithm with constraints. HVAC system is modelled with a control valve, heat emitter, occupancy driven ventilation controlled through a PID controller. A complete building energy system (BES) modeling procedure based on first principles of building physics is presented. BES model is simulated using MATLAB/Simulink and the results depict the temperature variations within the building space at less computational times.\",\"PeriodicalId\":118902,\"journal\":{\"name\":\"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICROCOM.2016.7522473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICROCOM.2016.7522473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

建立了建筑能源系统(BES)的数学模型,该模型映射了建筑空间内发生的能量传递过程。构成建筑空间的建筑元素以及为居住者提供热舒适的供暖和制冷设备也被建模。这涉及量化温度和湿度条件与建筑空间内的占用水平(占用人数、占用时间表)之间的联系。模拟了建筑元素每个表面的导热、对流和辐射热平衡以及建筑空间的对流热平衡的热能传递过程。对建筑空间区域的显热能和潜热传递进行了建模。采用状态空间方法对墙体等建筑构件进行建模,参数估计采用带约束的非线性时不变优化算法。暖通空调系统采用控制阀,热辐射器,占用驱动通风,通过PID控制器控制。提出了一种基于建筑物理第一性原理的完整的建筑能源系统(BES)建模方法。利用MATLAB/Simulink对BES模型进行了仿真,结果表明该模型在较短的计算时间内就能较好地描述建筑空间内的温度变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and simulation of a simple building energy system
A mathematical model for building energy systems (BES) is developed which maps the energy transfer processes occurring within the building space. Construction elements making up the building space and the heating and cooling plant responsible for thermal comfort of the occupants are also modeled. This involved quantification of linkages between temperature and humidity conditions and level occupancy (number of occupants, occupancy schedule) within building space. Thermal energy transfer processes of conductive, convective, and radiative heat balance for each surface of the construction elements and a convective heat balance for the building space are modeled. Building space zone is modelled for both sensible and latent thermal energy transfer. State space approach is used to model the building construction elements such as walls, with the parameters estimated using a nonlinear time invariant optimization algorithm with constraints. HVAC system is modelled with a control valve, heat emitter, occupancy driven ventilation controlled through a PID controller. A complete building energy system (BES) modeling procedure based on first principles of building physics is presented. BES model is simulated using MATLAB/Simulink and the results depict the temperature variations within the building space at less computational times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peak-to-average power ratio analysis for NC-OQAM/OFDM transmissions Improved speculative Apriori with percentiles algorithm for website restructuring based on usage patterns Achievement of various bands at the UltraWideband range: Design of an UltraWideband antenna using the concept of band-notching Improved performance of cascaded multilevel inverter Gesture based improved human-computer interaction using Microsoft's Kinect sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1