17.5本质线性宽带数字极性放大器,具有AM-AM和AM-PM校正,通过非线性尺寸,过驱动电压控制和多相射频时钟

M. Hashemi, Yiyu Shen, M. Mehrpoo, M. Acar, R. V. Leuken, M. Alavi, L. D. Vreede
{"title":"17.5本质线性宽带数字极性放大器,具有AM-AM和AM-PM校正,通过非线性尺寸,过驱动电压控制和多相射频时钟","authors":"M. Hashemi, Yiyu Shen, M. Mehrpoo, M. Acar, R. V. Leuken, M. Alavi, L. D. Vreede","doi":"10.1109/ISSCC.2017.7870380","DOIUrl":null,"url":null,"abstract":"To fully benefit from the progress of CMOS technologies, it is desirable to completely digitize the TX, replacing its final stage with a digitally controlled PA (DPA). The DPA consists of arrays of small sub-PAs that are digitally controlled to modulate the output amplitude, thus operating as an RF-DAC [1–6]. DPAs are normally designed in a switched mode (Classes E/D/D−1, etc.) to achieve high efficiency while using high sampling rate to attenuate and push the spectral images to higher frequencies. However, they suffer from high nonlinearity in their AM-code-word (ACW) to AM and ACW-to-PM conversion. To correct for such nonlinearities, digital pre-distortion (DPD) of the input signal is often used [1–3], typically implemented by look-up tables (LUT). Unfortunately, DPD approaches suffer from large signal-BW expansion due to their inherently nonlinear characteristics. This, combined with the already present BW regrowth in a polar TX in the AM and PM paths, yields significant hardware-speed/power constraints when the signal BW becomes large. For a Cartesian TX, the use of LUT-DPD is even more complicated since a full 2D LUT is typically required [2]. To relax the overall system complexity, it is highly desirable to have a PA with a maximum inherent linearity without compromising its power or efficiency. In this work, an ACW-AM correction based on nonlinear sizing along with controlling the peak voltage of RF clocks (overdrive voltage tuning) and a ACW-PM correction based on multiphase RF clocking are introduced to linearize the characteristic curves of a Class-E polar DPA with intent to avoid any kind of pre-distortion.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"17.5 An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking\",\"authors\":\"M. Hashemi, Yiyu Shen, M. Mehrpoo, M. Acar, R. V. Leuken, M. Alavi, L. D. Vreede\",\"doi\":\"10.1109/ISSCC.2017.7870380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fully benefit from the progress of CMOS technologies, it is desirable to completely digitize the TX, replacing its final stage with a digitally controlled PA (DPA). The DPA consists of arrays of small sub-PAs that are digitally controlled to modulate the output amplitude, thus operating as an RF-DAC [1–6]. DPAs are normally designed in a switched mode (Classes E/D/D−1, etc.) to achieve high efficiency while using high sampling rate to attenuate and push the spectral images to higher frequencies. However, they suffer from high nonlinearity in their AM-code-word (ACW) to AM and ACW-to-PM conversion. To correct for such nonlinearities, digital pre-distortion (DPD) of the input signal is often used [1–3], typically implemented by look-up tables (LUT). Unfortunately, DPD approaches suffer from large signal-BW expansion due to their inherently nonlinear characteristics. This, combined with the already present BW regrowth in a polar TX in the AM and PM paths, yields significant hardware-speed/power constraints when the signal BW becomes large. For a Cartesian TX, the use of LUT-DPD is even more complicated since a full 2D LUT is typically required [2]. To relax the overall system complexity, it is highly desirable to have a PA with a maximum inherent linearity without compromising its power or efficiency. In this work, an ACW-AM correction based on nonlinear sizing along with controlling the peak voltage of RF clocks (overdrive voltage tuning) and a ACW-PM correction based on multiphase RF clocking are introduced to linearize the characteristic curves of a Class-E polar DPA with intent to avoid any kind of pre-distortion.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了充分利用CMOS技术的进步,需要将TX完全数字化,用数字控制的PA (DPA)取代其最后阶段。DPA由小的子pa阵列组成,通过数字控制来调制输出幅度,从而作为RF-DAC工作[1-6]。dpa通常设计为切换模式(E/D/D−1类等),以实现高效率,同时使用高采样率衰减并将光谱图像推至更高频率。然而,它们的调幅码字(ACW)到调幅和ACW到pm的转换存在高度非线性。为了校正这种非线性,通常使用输入信号的数字预失真(DPD)[1-3],通常通过查找表(LUT)实现。不幸的是,DPD方法由于其固有的非线性特性而遭受较大的信号bw扩展。这一点,再加上在调幅和PM路径中极性TX中已经存在的BW再生,当信号BW变大时,会产生显着的硬件速度/功率限制。对于直角TX, LUT- dpd的使用更加复杂,因为通常需要一个完整的2D LUT。为了降低整个系统的复杂性,在不影响其功率或效率的情况下,具有最大固有线性度的PA是非常理想的。在这项工作中,介绍了基于非线性尺寸的ACW-AM校正以及控制射频时钟的峰值电压(过度驱动电压调谐)和基于多相射频时钟的ACW-PM校正,以线性化e类极性DPA的特性曲线,以避免任何类型的预失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
17.5 An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking
To fully benefit from the progress of CMOS technologies, it is desirable to completely digitize the TX, replacing its final stage with a digitally controlled PA (DPA). The DPA consists of arrays of small sub-PAs that are digitally controlled to modulate the output amplitude, thus operating as an RF-DAC [1–6]. DPAs are normally designed in a switched mode (Classes E/D/D−1, etc.) to achieve high efficiency while using high sampling rate to attenuate and push the spectral images to higher frequencies. However, they suffer from high nonlinearity in their AM-code-word (ACW) to AM and ACW-to-PM conversion. To correct for such nonlinearities, digital pre-distortion (DPD) of the input signal is often used [1–3], typically implemented by look-up tables (LUT). Unfortunately, DPD approaches suffer from large signal-BW expansion due to their inherently nonlinear characteristics. This, combined with the already present BW regrowth in a polar TX in the AM and PM paths, yields significant hardware-speed/power constraints when the signal BW becomes large. For a Cartesian TX, the use of LUT-DPD is even more complicated since a full 2D LUT is typically required [2]. To relax the overall system complexity, it is highly desirable to have a PA with a maximum inherent linearity without compromising its power or efficiency. In this work, an ACW-AM correction based on nonlinear sizing along with controlling the peak voltage of RF clocks (overdrive voltage tuning) and a ACW-PM correction based on multiphase RF clocking are introduced to linearize the characteristic curves of a Class-E polar DPA with intent to avoid any kind of pre-distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS 21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification 7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication 13.5 A 0.35-to-2.6GHz multilevel outphasing transmitter with a digital interpolating phase modulator enabling up to 400MHz instantaneous bandwidth 5.1 A 5×80W 0.004% THD+N automotive multiphase Class-D audio amplifier with integrated low-latency ΔΣ ADCs for digitized feedback after the output filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1