考虑漏感效应的耦合电感型DC-DC变换器动态建模及在线参数辨识

Amir Farakhor, H. Fang
{"title":"考虑漏感效应的耦合电感型DC-DC变换器动态建模及在线参数辨识","authors":"Amir Farakhor, H. Fang","doi":"10.1109/IECON48115.2021.9589404","DOIUrl":null,"url":null,"abstract":"In this paper, the dynamic modeling of a coupled-inductor-based DC-DC converter is investigated. Due to the time varying characteristics of converter parameters such as the output load and input voltage, the operating point of the converter changes within time. Therefore, traditional small signal modeling approaches are not accurate since the converter is linearized around a specific operating point. This paper seeks to address this problem by employing an online parameter identification technique to dynamically estimate the parameters. The identification is achieved through Kalman filtering. First, the small signal modeling of the converter is derived including the leakage inductance effect. Then, the Kalman filter is improved and applied to identify the control-to-output transfer function parameters. Extensive simulation results are provided to validate the robust and proper operation of presented modeling procedure.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Modeling and Online Parameter Identification of a Coupled-Inductor-Based DC-DC Converter with Leakage Inductance Effect Consideration\",\"authors\":\"Amir Farakhor, H. Fang\",\"doi\":\"10.1109/IECON48115.2021.9589404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the dynamic modeling of a coupled-inductor-based DC-DC converter is investigated. Due to the time varying characteristics of converter parameters such as the output load and input voltage, the operating point of the converter changes within time. Therefore, traditional small signal modeling approaches are not accurate since the converter is linearized around a specific operating point. This paper seeks to address this problem by employing an online parameter identification technique to dynamically estimate the parameters. The identification is achieved through Kalman filtering. First, the small signal modeling of the converter is derived including the leakage inductance effect. Then, the Kalman filter is improved and applied to identify the control-to-output transfer function parameters. Extensive simulation results are provided to validate the robust and proper operation of presented modeling procedure.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于耦合电感的DC-DC变换器的动态建模问题。由于变换器的输出负载、输入电压等参数具有时变特性,变换器的工作点随时间变化。因此,传统的小信号建模方法是不准确的,因为转换器是围绕一个特定的工作点线性化的。本文试图通过采用在线参数识别技术来动态估计参数来解决这一问题。通过卡尔曼滤波实现识别。首先,建立了考虑漏感效应的变换器小信号模型。然后,对卡尔曼滤波进行改进,并应用于控制-输出传递函数参数的辨识。大量的仿真结果验证了所提出的建模方法的鲁棒性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Modeling and Online Parameter Identification of a Coupled-Inductor-Based DC-DC Converter with Leakage Inductance Effect Consideration
In this paper, the dynamic modeling of a coupled-inductor-based DC-DC converter is investigated. Due to the time varying characteristics of converter parameters such as the output load and input voltage, the operating point of the converter changes within time. Therefore, traditional small signal modeling approaches are not accurate since the converter is linearized around a specific operating point. This paper seeks to address this problem by employing an online parameter identification technique to dynamically estimate the parameters. The identification is achieved through Kalman filtering. First, the small signal modeling of the converter is derived including the leakage inductance effect. Then, the Kalman filter is improved and applied to identify the control-to-output transfer function parameters. Extensive simulation results are provided to validate the robust and proper operation of presented modeling procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Extended Phase Shift Modulation for DAB Converter with the Blocking Capacitor An Online Noninvasive Estimation Method of Electrolytic Capacitor for Boost Converters Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS) Space Vector Modulation Scheme for Three-Phase Single-Stage SEPIC-Based Grid-Connected Differential Inverter Dynamic Phasor-Based Modeling and Analysis of Dual-Loop Controlled DC-DC Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1