James Thorne, Andreas Vlachos, O. Cocarascu, Christos Christodoulopoulos, Arpit Mittal
{"title":"共享任务","authors":"James Thorne, Andreas Vlachos, O. Cocarascu, Christos Christodoulopoulos, Arpit Mittal","doi":"10.18653/v1/D19-6601","DOIUrl":null,"url":null,"abstract":"We present the results of the second Fact Extraction and VERification (FEVER2.0) Shared Task. The task challenged participants to both build systems to verify factoid claims using evidence retrieved from Wikipedia and to generate adversarial attacks against other participant’s systems. The shared task had three phases: building, breaking and fixing. There were 8 systems in the builder’s round, three of which were new qualifying submissions for this shared task, and 5 adversaries generated instances designed to induce classification errors and one builder submitted a fixed system which had higher FEVER score and resilience than their first submission. All but one newly submitted systems attained FEVER scores higher than the best performing system from the first shared task and under adversarial evaluation, all systems exhibited losses in FEVER score. There was a great variety in adversarial attack types as well as the techniques used to generate the attacks, In this paper, we present the results of the shared task and a summary of the systems, highlighting commonalities and innovations among participating systems.","PeriodicalId":153447,"journal":{"name":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"The FEVER2.0 Shared Task\",\"authors\":\"James Thorne, Andreas Vlachos, O. Cocarascu, Christos Christodoulopoulos, Arpit Mittal\",\"doi\":\"10.18653/v1/D19-6601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of the second Fact Extraction and VERification (FEVER2.0) Shared Task. The task challenged participants to both build systems to verify factoid claims using evidence retrieved from Wikipedia and to generate adversarial attacks against other participant’s systems. The shared task had three phases: building, breaking and fixing. There were 8 systems in the builder’s round, three of which were new qualifying submissions for this shared task, and 5 adversaries generated instances designed to induce classification errors and one builder submitted a fixed system which had higher FEVER score and resilience than their first submission. All but one newly submitted systems attained FEVER scores higher than the best performing system from the first shared task and under adversarial evaluation, all systems exhibited losses in FEVER score. There was a great variety in adversarial attack types as well as the techniques used to generate the attacks, In this paper, we present the results of the shared task and a summary of the systems, highlighting commonalities and innovations among participating systems.\",\"PeriodicalId\":153447,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-6601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present the results of the second Fact Extraction and VERification (FEVER2.0) Shared Task. The task challenged participants to both build systems to verify factoid claims using evidence retrieved from Wikipedia and to generate adversarial attacks against other participant’s systems. The shared task had three phases: building, breaking and fixing. There were 8 systems in the builder’s round, three of which were new qualifying submissions for this shared task, and 5 adversaries generated instances designed to induce classification errors and one builder submitted a fixed system which had higher FEVER score and resilience than their first submission. All but one newly submitted systems attained FEVER scores higher than the best performing system from the first shared task and under adversarial evaluation, all systems exhibited losses in FEVER score. There was a great variety in adversarial attack types as well as the techniques used to generate the attacks, In this paper, we present the results of the shared task and a summary of the systems, highlighting commonalities and innovations among participating systems.