{"title":"基于卫星影像的NDVI和RVI植被指数比较","authors":"Abdurrahman Gonenc, M. S. Özerdem, Emrullah Acar","doi":"10.1109/Agro-Geoinformatics.2019.8820225","DOIUrl":null,"url":null,"abstract":"Remote Sensing is the acquisition of information about its physical properties without direct contact with an object. This information is obtained through sensors. These sensors do not come into contact with objects. There are two different systems for remote sensing. These are Active and Passive Sensor Systems. Passive Sensor Systems measure the energy of the rays reflected from the objects by the rays sent by the sun. On the other hand, Active Sensor Systems measure the energy reflected from the objects by transmitting their rays to the object. Passive Sensor Systems can be shown as an example of optical sensor systems. The Landsat-8 satellite works with an optical sensor system. Synthetic Aperture Radar (SAR) systems are examples of active sensor systems. SAR systems have a wide range of usage in all weather conditions and they are a radar system that displays the earth in high resolution. Radarsat-2 satellite has SAR sensor systems. The aim of this study is to compare each of the vegetation indices by using Landsat-8 and Radarsat-2 satellite images with two different types of sensors. In this study, Radar Vegetation Index (RVI) and Normalized Difference Vegetation Index (NDVI) were investigated. For the calculation of the RVI index, the back-scattering coefficient of the four different bands (HH, HV, VH, VV) of the multi-time full-polarimetric Radarsat-2 FQ satellite image dated 8 April 2015 was used. In the calculation of NDVI index, Band 5 (Near Infrared) and Band 4 (Red) of the Landsat-8 satellite image of May 25, 2015 were used. Dicle University agricultural areas were chosen as the study area. 100 different GPS points belonging to this agricultural area were determined and RVI and NDVI values of these points were calculated. A good correlation was observed between RVI and NDVI indices with the aid of statistically approach.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Comparison of NDVI and RVI Vegetation Indices Using Satellite Images\",\"authors\":\"Abdurrahman Gonenc, M. S. Özerdem, Emrullah Acar\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote Sensing is the acquisition of information about its physical properties without direct contact with an object. This information is obtained through sensors. These sensors do not come into contact with objects. There are two different systems for remote sensing. These are Active and Passive Sensor Systems. Passive Sensor Systems measure the energy of the rays reflected from the objects by the rays sent by the sun. On the other hand, Active Sensor Systems measure the energy reflected from the objects by transmitting their rays to the object. Passive Sensor Systems can be shown as an example of optical sensor systems. The Landsat-8 satellite works with an optical sensor system. Synthetic Aperture Radar (SAR) systems are examples of active sensor systems. SAR systems have a wide range of usage in all weather conditions and they are a radar system that displays the earth in high resolution. Radarsat-2 satellite has SAR sensor systems. The aim of this study is to compare each of the vegetation indices by using Landsat-8 and Radarsat-2 satellite images with two different types of sensors. In this study, Radar Vegetation Index (RVI) and Normalized Difference Vegetation Index (NDVI) were investigated. For the calculation of the RVI index, the back-scattering coefficient of the four different bands (HH, HV, VH, VV) of the multi-time full-polarimetric Radarsat-2 FQ satellite image dated 8 April 2015 was used. In the calculation of NDVI index, Band 5 (Near Infrared) and Band 4 (Red) of the Landsat-8 satellite image of May 25, 2015 were used. Dicle University agricultural areas were chosen as the study area. 100 different GPS points belonging to this agricultural area were determined and RVI and NDVI values of these points were calculated. A good correlation was observed between RVI and NDVI indices with the aid of statistically approach.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of NDVI and RVI Vegetation Indices Using Satellite Images
Remote Sensing is the acquisition of information about its physical properties without direct contact with an object. This information is obtained through sensors. These sensors do not come into contact with objects. There are two different systems for remote sensing. These are Active and Passive Sensor Systems. Passive Sensor Systems measure the energy of the rays reflected from the objects by the rays sent by the sun. On the other hand, Active Sensor Systems measure the energy reflected from the objects by transmitting their rays to the object. Passive Sensor Systems can be shown as an example of optical sensor systems. The Landsat-8 satellite works with an optical sensor system. Synthetic Aperture Radar (SAR) systems are examples of active sensor systems. SAR systems have a wide range of usage in all weather conditions and they are a radar system that displays the earth in high resolution. Radarsat-2 satellite has SAR sensor systems. The aim of this study is to compare each of the vegetation indices by using Landsat-8 and Radarsat-2 satellite images with two different types of sensors. In this study, Radar Vegetation Index (RVI) and Normalized Difference Vegetation Index (NDVI) were investigated. For the calculation of the RVI index, the back-scattering coefficient of the four different bands (HH, HV, VH, VV) of the multi-time full-polarimetric Radarsat-2 FQ satellite image dated 8 April 2015 was used. In the calculation of NDVI index, Band 5 (Near Infrared) and Band 4 (Red) of the Landsat-8 satellite image of May 25, 2015 were used. Dicle University agricultural areas were chosen as the study area. 100 different GPS points belonging to this agricultural area were determined and RVI and NDVI values of these points were calculated. A good correlation was observed between RVI and NDVI indices with the aid of statistically approach.