基于残差和小波神经网络的风电叶片故障检测

Lalle M. N'Diaye, Austin. Phillips, Masoum Mohammad A.S., Mohammad Shekaramiz
{"title":"基于残差和小波神经网络的风电叶片故障检测","authors":"Lalle M. N'Diaye, Austin. Phillips, Masoum Mohammad A.S., Mohammad Shekaramiz","doi":"10.1109/ietc54973.2022.9796852","DOIUrl":null,"url":null,"abstract":"When wind turbine blade faults are not detected at an early stage, they can become costly to fix as the damage could worsen over time and the maintenance costs of the blades could increase. This paper investigates a monitoring method for efficient and accurate damage detection and fault diagnosis of wind turbine blades by using pictures of the blades. The method uses a Residual Neural Network, a model of Convolutional Neural Networks, with an integration of wavelet-based layers. This approach aims to improve the health monitoring system of the wind turbine blades and the accuracy of fault detection to reduce the monitoring cost and the operation interruptions of the wind turbines due to severe damage to the blades.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Residual and Wavelet based Neural Network for the Fault Detection of Wind Turbine Blades\",\"authors\":\"Lalle M. N'Diaye, Austin. Phillips, Masoum Mohammad A.S., Mohammad Shekaramiz\",\"doi\":\"10.1109/ietc54973.2022.9796852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When wind turbine blade faults are not detected at an early stage, they can become costly to fix as the damage could worsen over time and the maintenance costs of the blades could increase. This paper investigates a monitoring method for efficient and accurate damage detection and fault diagnosis of wind turbine blades by using pictures of the blades. The method uses a Residual Neural Network, a model of Convolutional Neural Networks, with an integration of wavelet-based layers. This approach aims to improve the health monitoring system of the wind turbine blades and the accuracy of fault detection to reduce the monitoring cost and the operation interruptions of the wind turbines due to severe damage to the blades.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当风力涡轮机叶片故障没有在早期阶段被发现时,修复它们可能会变得昂贵,因为损坏可能会随着时间的推移而恶化,叶片的维护成本可能会增加。本文研究了一种利用风力发电机叶片图像进行高效、准确的损伤检测和故障诊断的监测方法。该方法使用残差神经网络,卷积神经网络的一种模型,与小波为基础的层集成。该方法旨在完善风力发电机组叶片健康监测系统,提高故障检测的准确性,降低监测成本,减少因叶片严重损坏导致的风力发电机组运行中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residual and Wavelet based Neural Network for the Fault Detection of Wind Turbine Blades
When wind turbine blade faults are not detected at an early stage, they can become costly to fix as the damage could worsen over time and the maintenance costs of the blades could increase. This paper investigates a monitoring method for efficient and accurate damage detection and fault diagnosis of wind turbine blades by using pictures of the blades. The method uses a Residual Neural Network, a model of Convolutional Neural Networks, with an integration of wavelet-based layers. This approach aims to improve the health monitoring system of the wind turbine blades and the accuracy of fault detection to reduce the monitoring cost and the operation interruptions of the wind turbines due to severe damage to the blades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1