主动统计模型统一子空间优化的人脸对齐

Ming Zhao, Tat-Seng Chua
{"title":"主动统计模型统一子空间优化的人脸对齐","authors":"Ming Zhao, Tat-Seng Chua","doi":"10.1109/FGR.2006.40","DOIUrl":null,"url":null,"abstract":"Active statistical models including active shape models and active appearance models are very powerful for face alignment. They are composed of two parts: the subspace model(s) and the search process. While these two parts are closely correlated, existing efforts treated them separately and had not considered how to optimize them overall. Another problem with the subspace model(s) is that the two kinds of parameters of subspaces (the number of components and the constraints on the components) are also treated separately. So they are not jointly optimized. To tackle these two problems, an unified subspace optimization method is proposed. This method is composed of two unification aspects: (I) unification of the statistical model and the search process: the subspace models are optimized according to the search procedure; (2) unification of the number of components and the constraints: the two kinds of parameters are modelled in an unified way, such that they can be optimized jointly. Experimental results demonstrate that our method can effectively find the optimal subspace model and significantly improve the performance","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face Alignment with Unified Subspace Optimization of Active Statistical Models\",\"authors\":\"Ming Zhao, Tat-Seng Chua\",\"doi\":\"10.1109/FGR.2006.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active statistical models including active shape models and active appearance models are very powerful for face alignment. They are composed of two parts: the subspace model(s) and the search process. While these two parts are closely correlated, existing efforts treated them separately and had not considered how to optimize them overall. Another problem with the subspace model(s) is that the two kinds of parameters of subspaces (the number of components and the constraints on the components) are also treated separately. So they are not jointly optimized. To tackle these two problems, an unified subspace optimization method is proposed. This method is composed of two unification aspects: (I) unification of the statistical model and the search process: the subspace models are optimized according to the search procedure; (2) unification of the number of components and the constraints: the two kinds of parameters are modelled in an unified way, such that they can be optimized jointly. Experimental results demonstrate that our method can effectively find the optimal subspace model and significantly improve the performance\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

包括主动形状模型和主动外观模型在内的主动统计模型对人脸对齐非常有效。它们由两部分组成:子空间模型和搜索过程。虽然这两个部分是密切相关的,但现有的工作将它们分开处理,没有考虑如何全面优化它们。子空间模型的另一个问题是子空间的两种参数(组件的数量和组件的约束)也被分开处理。所以它们不是联合优化的。针对这两个问题,提出了一种统一的子空间优化方法。该方法由两个统一方面组成:(1)统计模型与搜索过程的统一:根据搜索过程对子空间模型进行优化;(2)构件数量和约束条件的统一:将两类参数统一建模,可以进行联合优化。实验结果表明,该方法能有效地找到最优子空间模型,显著提高了性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Alignment with Unified Subspace Optimization of Active Statistical Models
Active statistical models including active shape models and active appearance models are very powerful for face alignment. They are composed of two parts: the subspace model(s) and the search process. While these two parts are closely correlated, existing efforts treated them separately and had not considered how to optimize them overall. Another problem with the subspace model(s) is that the two kinds of parameters of subspaces (the number of components and the constraints on the components) are also treated separately. So they are not jointly optimized. To tackle these two problems, an unified subspace optimization method is proposed. This method is composed of two unification aspects: (I) unification of the statistical model and the search process: the subspace models are optimized according to the search procedure; (2) unification of the number of components and the constraints: the two kinds of parameters are modelled in an unified way, such that they can be optimized jointly. Experimental results demonstrate that our method can effectively find the optimal subspace model and significantly improve the performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1