F. Rudolf, J. Weinbub, K. Rupp, A. Morhammer, S. Selberherr
{"title":"半导体器件基于模板的网格生成","authors":"F. Rudolf, J. Weinbub, K. Rupp, A. Morhammer, S. Selberherr","doi":"10.1109/SISPAD.2014.6931602","DOIUrl":null,"url":null,"abstract":"Creating multiple meshes of a semiconductor device by varying specific geometric properties, like the gate length of a MOSFET, is a crucial step for optimization or scaling processes of these devices. A geometry generation technique for semiconductor devices using geometry templates is presented and implemented in the open source meshing tool ViennaMesh, providing a convenient mechanism for creating device geometries based on a selected set of parameters. These geometries can be used by ViennaMesh to create high-quality meshes to be exported and used by simulation tools. Results of meshes for two-dimensional MOSFET and three-dimensional FinFET devices created by this technique are presented.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Template-based mesh generation for semiconductor devices\",\"authors\":\"F. Rudolf, J. Weinbub, K. Rupp, A. Morhammer, S. Selberherr\",\"doi\":\"10.1109/SISPAD.2014.6931602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating multiple meshes of a semiconductor device by varying specific geometric properties, like the gate length of a MOSFET, is a crucial step for optimization or scaling processes of these devices. A geometry generation technique for semiconductor devices using geometry templates is presented and implemented in the open source meshing tool ViennaMesh, providing a convenient mechanism for creating device geometries based on a selected set of parameters. These geometries can be used by ViennaMesh to create high-quality meshes to be exported and used by simulation tools. Results of meshes for two-dimensional MOSFET and three-dimensional FinFET devices created by this technique are presented.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Template-based mesh generation for semiconductor devices
Creating multiple meshes of a semiconductor device by varying specific geometric properties, like the gate length of a MOSFET, is a crucial step for optimization or scaling processes of these devices. A geometry generation technique for semiconductor devices using geometry templates is presented and implemented in the open source meshing tool ViennaMesh, providing a convenient mechanism for creating device geometries based on a selected set of parameters. These geometries can be used by ViennaMesh to create high-quality meshes to be exported and used by simulation tools. Results of meshes for two-dimensional MOSFET and three-dimensional FinFET devices created by this technique are presented.