废墟建筑的现代建筑风格转换

Chia-Ching Wang, Hsin-Hua Liu, S. Pei, Kuan-Hsien Liu, Tsung-Jung Liu
{"title":"废墟建筑的现代建筑风格转换","authors":"Chia-Ching Wang, Hsin-Hua Liu, S. Pei, Kuan-Hsien Liu, Tsung-Jung Liu","doi":"10.1109/AICAS.2019.8771623","DOIUrl":null,"url":null,"abstract":"In this work, we focus on building style transfer, which transforms ruin buildings to modern architecture. Inspired by Gaty’s and Goodfellow’s style transfer and generative adversarial network (GAN), we use CycleGAN to conquer this type of problem. To avoid the artifacts and generate better images, we add “perception loss” into the network, which is the feature loss extracted by VGG pre-trained model. We also adjust cycle loss by changing the ratio of weighting parameters. Finally, we collect images of both ruin and modern architecture from websites and use unsupervised learning to train the model. The experimental results show our proposed method indeed realize the modern architecture style transfer for ruin buildings.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modern Architecture Style Transfer for Ruin Buildings\",\"authors\":\"Chia-Ching Wang, Hsin-Hua Liu, S. Pei, Kuan-Hsien Liu, Tsung-Jung Liu\",\"doi\":\"10.1109/AICAS.2019.8771623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus on building style transfer, which transforms ruin buildings to modern architecture. Inspired by Gaty’s and Goodfellow’s style transfer and generative adversarial network (GAN), we use CycleGAN to conquer this type of problem. To avoid the artifacts and generate better images, we add “perception loss” into the network, which is the feature loss extracted by VGG pre-trained model. We also adjust cycle loss by changing the ratio of weighting parameters. Finally, we collect images of both ruin and modern architecture from websites and use unsupervised learning to train the model. The experimental results show our proposed method indeed realize the modern architecture style transfer for ruin buildings.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们关注的是建筑风格的转换,将废墟建筑转变为现代建筑。受gatey和Goodfellow的风格转移和生成对抗网络(GAN)的启发,我们使用CycleGAN来解决这类问题。为了避免伪影,生成更好的图像,我们在网络中加入了“感知损失”,即VGG预训练模型提取的特征损失。我们还通过改变加权参数的比例来调整周期损耗。最后,我们从网站上收集废墟和现代建筑的图像,并使用无监督学习来训练模型。实验结果表明,该方法确实实现了废墟建筑的现代建筑风格转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern Architecture Style Transfer for Ruin Buildings
In this work, we focus on building style transfer, which transforms ruin buildings to modern architecture. Inspired by Gaty’s and Goodfellow’s style transfer and generative adversarial network (GAN), we use CycleGAN to conquer this type of problem. To avoid the artifacts and generate better images, we add “perception loss” into the network, which is the feature loss extracted by VGG pre-trained model. We also adjust cycle loss by changing the ratio of weighting parameters. Finally, we collect images of both ruin and modern architecture from websites and use unsupervised learning to train the model. The experimental results show our proposed method indeed realize the modern architecture style transfer for ruin buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1