基于二维码的无人机路径规划与目标检测风电机组检测代理案例研究

Branden Pinney, Shayne Duncan, Mohammad Shekaramiz, M. Masoum
{"title":"基于二维码的无人机路径规划与目标检测风电机组检测代理案例研究","authors":"Branden Pinney, Shayne Duncan, Mohammad Shekaramiz, M. Masoum","doi":"10.1109/ietc54973.2022.9796739","DOIUrl":null,"url":null,"abstract":"This case study shows the initial results of aiming for reducing the cost, man-hours, and safety risks involved with the external structural inspection process of wind turbines using a fully automated drone-based system. The end goal is to use object detection and path planning algorithms to automate the process of identifying a specific wind turbine in the field via a drone, safely approaching the wind turbine, and capturing the images necessary for analysis and inspection. Our case study here serves as a small-scale proof of concept for the path planning solutions using pedestal fans in the place of wind turbines and a Tello EDU drone. Our study demonstrates the success of the drone to autonomously explore the region of interest, detect the desired fan, safely approach the fan, verify the fan via scanning the associated QR code, capture video and images from multiple angles, and safely fly back to the starting point and land.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Drone Path Planning and Object Detection via QR Codes; A Surrogate Case Study for Wind Turbine Inspection\",\"authors\":\"Branden Pinney, Shayne Duncan, Mohammad Shekaramiz, M. Masoum\",\"doi\":\"10.1109/ietc54973.2022.9796739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This case study shows the initial results of aiming for reducing the cost, man-hours, and safety risks involved with the external structural inspection process of wind turbines using a fully automated drone-based system. The end goal is to use object detection and path planning algorithms to automate the process of identifying a specific wind turbine in the field via a drone, safely approaching the wind turbine, and capturing the images necessary for analysis and inspection. Our case study here serves as a small-scale proof of concept for the path planning solutions using pedestal fans in the place of wind turbines and a Tello EDU drone. Our study demonstrates the success of the drone to autonomously explore the region of interest, detect the desired fan, safely approach the fan, verify the fan via scanning the associated QR code, capture video and images from multiple angles, and safely fly back to the starting point and land.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本案例研究展示了使用全自动无人机系统降低风力涡轮机外部结构检查过程中的成本、工时和安全风险的初步结果。最终目标是使用目标检测和路径规划算法,通过无人机在现场自动识别特定风力涡轮机,安全接近风力涡轮机,并捕获分析和检查所需的图像。我们在这里的案例研究作为路径规划解决方案的小规模概念验证,使用基座风扇代替风力涡轮机和Tello EDU无人机。我们的研究表明,无人机成功地自主探索感兴趣的区域,检测所需的风扇,安全接近风扇,通过扫描相关的二维码验证风扇,从多个角度捕获视频和图像,并安全飞回起点并着陆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drone Path Planning and Object Detection via QR Codes; A Surrogate Case Study for Wind Turbine Inspection
This case study shows the initial results of aiming for reducing the cost, man-hours, and safety risks involved with the external structural inspection process of wind turbines using a fully automated drone-based system. The end goal is to use object detection and path planning algorithms to automate the process of identifying a specific wind turbine in the field via a drone, safely approaching the wind turbine, and capturing the images necessary for analysis and inspection. Our case study here serves as a small-scale proof of concept for the path planning solutions using pedestal fans in the place of wind turbines and a Tello EDU drone. Our study demonstrates the success of the drone to autonomously explore the region of interest, detect the desired fan, safely approach the fan, verify the fan via scanning the associated QR code, capture video and images from multiple angles, and safely fly back to the starting point and land.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1