Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin
{"title":"基于远程空间依赖建模的城市人群流量预测的上下文感知时空神经网络","authors":"Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin","doi":"10.1145/3477577","DOIUrl":null,"url":null,"abstract":"Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Context-aware Spatial-Temporal Neural Network for Citywide Crowd Flow Prediction via Modeling Long-range Spatial Dependency\",\"authors\":\"Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin\",\"doi\":\"10.1145/3477577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-aware Spatial-Temporal Neural Network for Citywide Crowd Flow Prediction via Modeling Long-range Spatial Dependency
Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.