Luyi Mo, Reynold Cheng, Xiang Li, D. Cheung, Xuan S. Yang
{"title":"清理top-k查询的不确定数据","authors":"Luyi Mo, Reynold Cheng, Xiang Li, D. Cheung, Xuan S. Yang","doi":"10.1109/ICDE.2013.6544820","DOIUrl":null,"url":null,"abstract":"The information managed in emerging applications, such as sensor networks, location-based services, and data integration, is inherently imprecise. To handle data uncertainty, probabilistic databases have been recently developed. In this paper, we study how to quantify the ambiguity of answers returned by a probabilistic top-k query. We develop efficient algorithms to compute the quality of this query under the possible world semantics. We further address the cleaning of a probabilistic database, in order to improve top-k query quality. Cleaning involves the reduction of ambiguity associated with the database entities. For example, the uncertainty of a temperature value acquired from a sensor can be reduced, or cleaned, by requesting its newest value from the sensor. While this “cleaning operation” may produce a better query result, it may involve a cost and fail. We investigate the problem of selecting entities to be cleaned under a limited budget. Particularly, we propose an optimal solution and several heuristics. Experiments show that the greedy algorithm is efficient and close to optimal.","PeriodicalId":399979,"journal":{"name":"2013 IEEE 29th International Conference on Data Engineering (ICDE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Cleaning uncertain data for top-k queries\",\"authors\":\"Luyi Mo, Reynold Cheng, Xiang Li, D. Cheung, Xuan S. Yang\",\"doi\":\"10.1109/ICDE.2013.6544820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information managed in emerging applications, such as sensor networks, location-based services, and data integration, is inherently imprecise. To handle data uncertainty, probabilistic databases have been recently developed. In this paper, we study how to quantify the ambiguity of answers returned by a probabilistic top-k query. We develop efficient algorithms to compute the quality of this query under the possible world semantics. We further address the cleaning of a probabilistic database, in order to improve top-k query quality. Cleaning involves the reduction of ambiguity associated with the database entities. For example, the uncertainty of a temperature value acquired from a sensor can be reduced, or cleaned, by requesting its newest value from the sensor. While this “cleaning operation” may produce a better query result, it may involve a cost and fail. We investigate the problem of selecting entities to be cleaned under a limited budget. Particularly, we propose an optimal solution and several heuristics. Experiments show that the greedy algorithm is efficient and close to optimal.\",\"PeriodicalId\":399979,\"journal\":{\"name\":\"2013 IEEE 29th International Conference on Data Engineering (ICDE)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 29th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2013.6544820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 29th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2013.6544820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The information managed in emerging applications, such as sensor networks, location-based services, and data integration, is inherently imprecise. To handle data uncertainty, probabilistic databases have been recently developed. In this paper, we study how to quantify the ambiguity of answers returned by a probabilistic top-k query. We develop efficient algorithms to compute the quality of this query under the possible world semantics. We further address the cleaning of a probabilistic database, in order to improve top-k query quality. Cleaning involves the reduction of ambiguity associated with the database entities. For example, the uncertainty of a temperature value acquired from a sensor can be reduced, or cleaned, by requesting its newest value from the sensor. While this “cleaning operation” may produce a better query result, it may involve a cost and fail. We investigate the problem of selecting entities to be cleaned under a limited budget. Particularly, we propose an optimal solution and several heuristics. Experiments show that the greedy algorithm is efficient and close to optimal.