块状和非块状间歇需求的短期预测

W. Chua, Xue-Ming Yuan, W. Ng, T. Cai
{"title":"块状和非块状间歇需求的短期预测","authors":"W. Chua, Xue-Ming Yuan, W. Ng, T. Cai","doi":"10.1109/INDIN.2008.4618313","DOIUrl":null,"url":null,"abstract":"Accurately forecasting intermittent demands is a concern to many industries. This paper proposes an approach to improve forecast accuracies on intermittent demands given up to 36 months of historical data. The conventional approach to forecasting problems with irregular patterns is Crostonpsilas method. We use different methods based on modifications of Crostonpsilas method to forecast lumpy intermittent demand and non-lumpy intermittent demand. The historical data for lumpy intermittent demand is split into three series while that for non-lumpy demand is split into two. Forecasting is then performed separately on each of the series. The intermittent demand forecaster has been tested on two datasets and compared to Crostonpsilas method. The intermittent demand forecaster is able to reduce average forecasting error by 10.22% and 27.42% compared to Crostonpsilas method for non-lumpy demand and lumpy demand, respectively.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short term forecasting for lumpy and non-lumpy intermittent demands\",\"authors\":\"W. Chua, Xue-Ming Yuan, W. Ng, T. Cai\",\"doi\":\"10.1109/INDIN.2008.4618313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately forecasting intermittent demands is a concern to many industries. This paper proposes an approach to improve forecast accuracies on intermittent demands given up to 36 months of historical data. The conventional approach to forecasting problems with irregular patterns is Crostonpsilas method. We use different methods based on modifications of Crostonpsilas method to forecast lumpy intermittent demand and non-lumpy intermittent demand. The historical data for lumpy intermittent demand is split into three series while that for non-lumpy demand is split into two. Forecasting is then performed separately on each of the series. The intermittent demand forecaster has been tested on two datasets and compared to Crostonpsilas method. The intermittent demand forecaster is able to reduce average forecasting error by 10.22% and 27.42% compared to Crostonpsilas method for non-lumpy demand and lumpy demand, respectively.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准确预测间歇性需求是许多行业关注的问题。本文提出了一种提高间歇性需求预测精度的方法,给出了长达36个月的历史数据。对于不规则模式的问题,传统的预测方法是Crostonpsilas方法。在改进Crostonpsilas方法的基础上,采用不同的方法对块状间歇需求和非块状间歇需求进行预测。将块状间歇需求的历史数据分为三个系列,非块状间歇需求的历史数据分为两个系列。然后对每个系列分别进行预测。在两个数据集上对间歇性需求预测器进行了测试,并与Crostonpsilas方法进行了比较。对于非块状需求和块状需求,间歇需求预测器比Crostonpsilas方法的平均预测误差分别降低了10.22%和27.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short term forecasting for lumpy and non-lumpy intermittent demands
Accurately forecasting intermittent demands is a concern to many industries. This paper proposes an approach to improve forecast accuracies on intermittent demands given up to 36 months of historical data. The conventional approach to forecasting problems with irregular patterns is Crostonpsilas method. We use different methods based on modifications of Crostonpsilas method to forecast lumpy intermittent demand and non-lumpy intermittent demand. The historical data for lumpy intermittent demand is split into three series while that for non-lumpy demand is split into two. Forecasting is then performed separately on each of the series. The intermittent demand forecaster has been tested on two datasets and compared to Crostonpsilas method. The intermittent demand forecaster is able to reduce average forecasting error by 10.22% and 27.42% compared to Crostonpsilas method for non-lumpy demand and lumpy demand, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Safety supervision layer A feature selection method for Automated Visual Inspection systems Performances linkages between an airport and the Air Cargo Supply Chain — Evidences from Hong Kong and Singapore Kinematics control for a 6-DOF space manipulator based on ARM processor and FPGA Co-processor Remote robot control system based on DTMF of mobile phone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1