船舶操纵过程中瞬态操作的燃料消耗和排放

F. Dahms, M. Reška, M. Püschel, J. Nocke, E. Hassel
{"title":"船舶操纵过程中瞬态操作的燃料消耗和排放","authors":"F. Dahms, M. Reška, M. Püschel, J. Nocke, E. Hassel","doi":"10.1115/ICEF2018-9602","DOIUrl":null,"url":null,"abstract":"The following article details a method for the optimization and improved use of the internal combustion engine as main propulsion. The focus here is not on new propulsion systems or combustion processes, but on the characterization of the typical usage of existing systems in order to enable better utilization.\n As one major potential for improvement, the transient machinery operation is examined and discussed in this article. Higher fuel consumption and higher emissions occur compared with stationary engine operation in that operation mode. Experimental data from test bed (“Caterpillar MaK 6M20”) measurements are presented which explain the consequences of transient operation. Furthermore, appropriate analyzing methods to evaluate this operation mode are shown. Finally, a modelling approach is presented using the data for calibration and validation of an engine simulation model.\n The most significant part to predict real transient efficiency and emissions is the in-cylinder process and especially its combustion process. Therefore, the simulation model does not use engine maps but a mostly physically based engine model by using thermodynamic approaches and chemical reaction kinetics. The specific application of that simulation model for four-stroke medium-speed engines covers the behavior of transient operation during ship maneuverings since it is developed for integration into a ship engine simulator.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuel Consumption and Emissions in Transient Operation During Ship Maneuvering\",\"authors\":\"F. Dahms, M. Reška, M. Püschel, J. Nocke, E. Hassel\",\"doi\":\"10.1115/ICEF2018-9602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following article details a method for the optimization and improved use of the internal combustion engine as main propulsion. The focus here is not on new propulsion systems or combustion processes, but on the characterization of the typical usage of existing systems in order to enable better utilization.\\n As one major potential for improvement, the transient machinery operation is examined and discussed in this article. Higher fuel consumption and higher emissions occur compared with stationary engine operation in that operation mode. Experimental data from test bed (“Caterpillar MaK 6M20”) measurements are presented which explain the consequences of transient operation. Furthermore, appropriate analyzing methods to evaluate this operation mode are shown. Finally, a modelling approach is presented using the data for calibration and validation of an engine simulation model.\\n The most significant part to predict real transient efficiency and emissions is the in-cylinder process and especially its combustion process. Therefore, the simulation model does not use engine maps but a mostly physically based engine model by using thermodynamic approaches and chemical reaction kinetics. The specific application of that simulation model for four-stroke medium-speed engines covers the behavior of transient operation during ship maneuverings since it is developed for integration into a ship engine simulator.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下面的文章详细介绍了一种优化和改进内燃机作为主要推进装置的方法。这里的重点不是新的推进系统或燃烧过程,而是现有系统的典型使用特征,以便更好地利用。作为一个主要的改进潜力,本文对暂态机械操作进行了研究和讨论。在这种运行模式下,与固定发动机运行相比,燃油消耗和排放更高。实验数据从试验台(“卡特彼勒MaK 6M20”)的测量给出了解释瞬态操作的后果。在此基础上,提出了评价该运行模式的分析方法。最后,提出了一种利用数据对发动机仿真模型进行标定和验证的建模方法。预测真实瞬态效率和排放最重要的部分是缸内过程,特别是燃烧过程。因此,模拟模型不使用发动机图,而是使用热力学方法和化学反应动力学的主要基于物理的发动机模型。由于该仿真模型是为集成到船舶发动机模拟器中而开发的,因此在四冲程中速发动机的具体应用中涵盖了船舶操纵过程中的瞬态运行行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuel Consumption and Emissions in Transient Operation During Ship Maneuvering
The following article details a method for the optimization and improved use of the internal combustion engine as main propulsion. The focus here is not on new propulsion systems or combustion processes, but on the characterization of the typical usage of existing systems in order to enable better utilization. As one major potential for improvement, the transient machinery operation is examined and discussed in this article. Higher fuel consumption and higher emissions occur compared with stationary engine operation in that operation mode. Experimental data from test bed (“Caterpillar MaK 6M20”) measurements are presented which explain the consequences of transient operation. Furthermore, appropriate analyzing methods to evaluate this operation mode are shown. Finally, a modelling approach is presented using the data for calibration and validation of an engine simulation model. The most significant part to predict real transient efficiency and emissions is the in-cylinder process and especially its combustion process. Therefore, the simulation model does not use engine maps but a mostly physically based engine model by using thermodynamic approaches and chemical reaction kinetics. The specific application of that simulation model for four-stroke medium-speed engines covers the behavior of transient operation during ship maneuverings since it is developed for integration into a ship engine simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation Emission and Combustion Characteristics of Diesel Engine Fumigated With Ammonia Effects of Outlier Flow Field on the Characteristics of In-Cylinder Coherent Structures Identified by POD-Based Conditional Averaging and Quadruple POD CI Engine Model Predictive Control With Availability Destruction Minimization Investigation of the Impact of Adding Titanium Dioxide to Jojoba Biodiesel-Diesel-N-Hexane Mixture on the Performance and Emission Characteristics of a Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1