Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton
{"title":"疾病分类:概率方法","authors":"Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton","doi":"10.1109/ISBI.2010.5490246","DOIUrl":null,"url":null,"abstract":"We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"55 32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Disease classification: A probabilistic approach\",\"authors\":\"Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton\",\"doi\":\"10.1109/ISBI.2010.5490246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"55 32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).