疾病分类:概率方法

Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton
{"title":"疾病分类:概率方法","authors":"Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton","doi":"10.1109/ISBI.2010.5490246","DOIUrl":null,"url":null,"abstract":"We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"55 32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Disease classification: A probabilistic approach\",\"authors\":\"Y. Rathi, J. Malcolm, S. Bouix, R. McCarley, L. Seidman, J. Goldstein, C. Westin, M. Shenton\",\"doi\":\"10.1109/ISBI.2010.5490246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"55 32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了一种概率技术,用于分离两个种群,从而对每个患者的仿射不变表示进行分析。该方法首先将每个体素从高维扩散加权信号转换为低维扩散张量表示。从张量表示中导出捕获局部组织不同方面的三个正交度量以形成特征向量。从这些特征向量中,我们形成每个患者的概率表示。这种表示是仿射不变的,因此不需要对图像进行配准。然后,我们使用Parzen窗口分类器来估计新患者属于任何一个群体的可能性。为了证明这一技术,我们将其应用于22名首发精神分裂症患者和20名正常对照者的分析。通过左多空交叉验证,我们发现检出率为90.91%(假阳性10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disease classification: A probabilistic approach
We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1