基于线特征的激光雷达和相机外部定标

Jingjing Jiang, Peixin Xue, Shi-tao Chen, Zi-yi Liu, Xuetao Zhang, Nanning Zheng
{"title":"基于线特征的激光雷达和相机外部定标","authors":"Jingjing Jiang, Peixin Xue, Shi-tao Chen, Zi-yi Liu, Xuetao Zhang, Nanning Zheng","doi":"10.1109/ICVES.2018.8519493","DOIUrl":null,"url":null,"abstract":"Reliable extrinsic calibration is a crucial first step for multi-sensor data fusion, which is the key part of the autonomous vehicle to perceive the environment carefully and effectively. In this paper, we propose an effective extrinsic calibration pipeline to establish the transformation between camera and LiDAR and update the decalibration online on an autonomous driving platform. We obtain rotation extrinsic parameters using parallel lines features in road scene, and infer translation extrinsic parameters by an online search approach based on selective edge alignment of point cloud and image. In order to evaluate our calibration system, it is first validated on KITTI benchmark and compared with the baseline algorithm. After that, the proposed method is tested on our own data. The results show that our method has a better rotation accuracy and demonstrate the necessity of error correction online.","PeriodicalId":203807,"journal":{"name":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Line Feature Based Extrinsic Calibration of LiDAR and Camera\",\"authors\":\"Jingjing Jiang, Peixin Xue, Shi-tao Chen, Zi-yi Liu, Xuetao Zhang, Nanning Zheng\",\"doi\":\"10.1109/ICVES.2018.8519493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable extrinsic calibration is a crucial first step for multi-sensor data fusion, which is the key part of the autonomous vehicle to perceive the environment carefully and effectively. In this paper, we propose an effective extrinsic calibration pipeline to establish the transformation between camera and LiDAR and update the decalibration online on an autonomous driving platform. We obtain rotation extrinsic parameters using parallel lines features in road scene, and infer translation extrinsic parameters by an online search approach based on selective edge alignment of point cloud and image. In order to evaluate our calibration system, it is first validated on KITTI benchmark and compared with the baseline algorithm. After that, the proposed method is tested on our own data. The results show that our method has a better rotation accuracy and demonstrate the necessity of error correction online.\",\"PeriodicalId\":203807,\"journal\":{\"name\":\"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2018.8519493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2018.8519493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

可靠的外部标定是多传感器数据融合的关键第一步,是自动驾驶汽车对环境进行细致有效感知的关键环节。本文提出了一种有效的外部标定管道,用于自动驾驶平台上相机与激光雷达之间的转换,并在线更新标定结果。利用道路场景中的平行线特征获取旋转外部参数,并基于点云和图像的选择性边缘对齐在线搜索方法推断平移外部参数。为了评估我们的标定系统,首先在KITTI基准上进行了验证,并与基线算法进行了比较。然后,用我们自己的数据对所提出的方法进行了测试。结果表明,该方法具有较好的旋转精度,并证明了在线误差校正的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Line Feature Based Extrinsic Calibration of LiDAR and Camera
Reliable extrinsic calibration is a crucial first step for multi-sensor data fusion, which is the key part of the autonomous vehicle to perceive the environment carefully and effectively. In this paper, we propose an effective extrinsic calibration pipeline to establish the transformation between camera and LiDAR and update the decalibration online on an autonomous driving platform. We obtain rotation extrinsic parameters using parallel lines features in road scene, and infer translation extrinsic parameters by an online search approach based on selective edge alignment of point cloud and image. In order to evaluate our calibration system, it is first validated on KITTI benchmark and compared with the baseline algorithm. After that, the proposed method is tested on our own data. The results show that our method has a better rotation accuracy and demonstrate the necessity of error correction online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey: Engineering Challenges to Implement VANET Security Revisiting Gaussian Mixture Models for Driver Identification On the Impact of Platooning Maneuvers on Traffic Improvement of Pedestrian Positioning Precision by Using Spatial Correlation of Multipath Error Dense Spatial Translation Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1