Kraken:大规模实时推荐的高效内存持续学习

Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen Lin, H. Ao, Wanhong Xu, J. Shu
{"title":"Kraken:大规模实时推荐的高效内存持续学习","authors":"Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen Lin, H. Ao, Wanhong Xu, J. Shu","doi":"10.1109/SC41405.2020.00025","DOIUrl":null,"url":null,"abstract":"Modern recommendation systems in industry often use deep learning (DL) models that achieve better model accuracy with more data and model parameters. However, current opensource DL frameworks, such as TensorFlow and PyTorch, show relatively low scalability on training recommendation models with terabytes of parameters. To efficiently learn large-scale recommendation models from data streams that generate hundreds of terabytes training data daily, we introduce a continual learning system called Kraken. Kraken contains a special parameter server implementation that dynamically adapts to the rapidly changing set of sparse features for the continual training and serving of recommendation models. Kraken provides a sparsity-aware training system that uses different learning optimizers for dense and sparse parameters to reduce memory overhead. Extensive experiments using real-world datasets confirm the effectiveness and scalability of Kraken. Kraken can benefit the accuracy of recommendation tasks with the same memory resources, or trisect the memory usage while keeping model performance.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Kraken: Memory-Efficient Continual Learning for Large-Scale Real-Time Recommendations\",\"authors\":\"Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen Lin, H. Ao, Wanhong Xu, J. Shu\",\"doi\":\"10.1109/SC41405.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern recommendation systems in industry often use deep learning (DL) models that achieve better model accuracy with more data and model parameters. However, current opensource DL frameworks, such as TensorFlow and PyTorch, show relatively low scalability on training recommendation models with terabytes of parameters. To efficiently learn large-scale recommendation models from data streams that generate hundreds of terabytes training data daily, we introduce a continual learning system called Kraken. Kraken contains a special parameter server implementation that dynamically adapts to the rapidly changing set of sparse features for the continual training and serving of recommendation models. Kraken provides a sparsity-aware training system that uses different learning optimizers for dense and sparse parameters to reduce memory overhead. Extensive experiments using real-world datasets confirm the effectiveness and scalability of Kraken. Kraken can benefit the accuracy of recommendation tasks with the same memory resources, or trisect the memory usage while keeping model performance.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

工业中的现代推荐系统通常使用深度学习(DL)模型,通过更多的数据和模型参数实现更好的模型精度。然而,目前的开源深度学习框架,如TensorFlow和PyTorch,在训练推荐模型时显示出相对较低的可扩展性。为了有效地从每天生成数百tb训练数据的数据流中学习大规模推荐模型,我们引入了一个名为Kraken的持续学习系统。Kraken包含一个特殊的参数服务器实现,它可以动态地适应快速变化的稀疏特征集,以持续训练和服务推荐模型。Kraken提供了一个稀疏感知的训练系统,它使用不同的学习优化器来处理密集和稀疏参数,以减少内存开销。使用真实世界数据集的大量实验证实了Kraken的有效性和可扩展性。Kraken可以使用相同的内存资源来提高推荐任务的准确性,或者在保持模型性能的同时将内存使用分成三部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kraken: Memory-Efficient Continual Learning for Large-Scale Real-Time Recommendations
Modern recommendation systems in industry often use deep learning (DL) models that achieve better model accuracy with more data and model parameters. However, current opensource DL frameworks, such as TensorFlow and PyTorch, show relatively low scalability on training recommendation models with terabytes of parameters. To efficiently learn large-scale recommendation models from data streams that generate hundreds of terabytes training data daily, we introduce a continual learning system called Kraken. Kraken contains a special parameter server implementation that dynamically adapts to the rapidly changing set of sparse features for the continual training and serving of recommendation models. Kraken provides a sparsity-aware training system that uses different learning optimizers for dense and sparse parameters to reduce memory overhead. Extensive experiments using real-world datasets confirm the effectiveness and scalability of Kraken. Kraken can benefit the accuracy of recommendation tasks with the same memory resources, or trisect the memory usage while keeping model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1