低质量人脸图像的年龄估计

Kuan-Hsien Liu, Hsin-Hua Liu, S. Pei, Tsung-Jung Liu, Chun-Te Chang
{"title":"低质量人脸图像的年龄估计","authors":"Kuan-Hsien Liu, Hsin-Hua Liu, S. Pei, Tsung-Jung Liu, Chun-Te Chang","doi":"10.1109/AICAS.2019.8771612","DOIUrl":null,"url":null,"abstract":"In this paper, we contribute an age estimation method towards dealing with low quality face images. This is a practical and important problem because an image we received may have low resolution or be affected by some noise via transmission. Upon reviewing the literature on facial age estimation, we notice that few articles tackle this low quality image based facial age estimation problem. In our framework, we propose a newly designed deep convolutional neural networks architecture, consisting of five major steps. Firstly, we propose to use a super-resolution method to enhance the input images. Secondly, a data augmentation step is utilized to ease the training procedure. Thirdly, we use a deep network to conduct gender grouping. Fourthly, two recently proposed deep networks are modified with depthwise separable convolutions to perform age estimation within male and female groups. Finally, a fusion procedure is added to further boost age estimation accuracy. In the experiment, we use two benchmark datasets, IMDB-WIKI and MORPH-II, to verify our proposed method and also show a significantly performance improvement over two state-of-the-art deep CNN models.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Age Estimation on Low Quality Face Images\",\"authors\":\"Kuan-Hsien Liu, Hsin-Hua Liu, S. Pei, Tsung-Jung Liu, Chun-Te Chang\",\"doi\":\"10.1109/AICAS.2019.8771612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we contribute an age estimation method towards dealing with low quality face images. This is a practical and important problem because an image we received may have low resolution or be affected by some noise via transmission. Upon reviewing the literature on facial age estimation, we notice that few articles tackle this low quality image based facial age estimation problem. In our framework, we propose a newly designed deep convolutional neural networks architecture, consisting of five major steps. Firstly, we propose to use a super-resolution method to enhance the input images. Secondly, a data augmentation step is utilized to ease the training procedure. Thirdly, we use a deep network to conduct gender grouping. Fourthly, two recently proposed deep networks are modified with depthwise separable convolutions to perform age estimation within male and female groups. Finally, a fusion procedure is added to further boost age estimation accuracy. In the experiment, we use two benchmark datasets, IMDB-WIKI and MORPH-II, to verify our proposed method and also show a significantly performance improvement over two state-of-the-art deep CNN models.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种用于处理低质量人脸图像的年龄估计方法。这是一个实际而重要的问题,因为我们接收到的图像可能分辨率很低,或者在传输过程中受到一些噪声的影响。在回顾有关面部年龄估计的文献时,我们注意到很少有文章解决这种基于低质量图像的面部年龄估计问题。在我们的框架中,我们提出了一个新设计的深度卷积神经网络架构,由五个主要步骤组成。首先,我们提出使用超分辨率方法对输入图像进行增强。其次,利用数据增强步骤简化训练过程。第三,我们使用深度网络进行性别分组。第四,用深度可分离卷积对最近提出的两个深度网络进行了修改,以在男性和女性群体中进行年龄估计。最后,加入融合过程,进一步提高了年龄估计的精度。在实验中,我们使用两个基准数据集IMDB-WIKI和morphi - ii来验证我们提出的方法,并且也显示出比两个最先进的深度CNN模型有显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age Estimation on Low Quality Face Images
In this paper, we contribute an age estimation method towards dealing with low quality face images. This is a practical and important problem because an image we received may have low resolution or be affected by some noise via transmission. Upon reviewing the literature on facial age estimation, we notice that few articles tackle this low quality image based facial age estimation problem. In our framework, we propose a newly designed deep convolutional neural networks architecture, consisting of five major steps. Firstly, we propose to use a super-resolution method to enhance the input images. Secondly, a data augmentation step is utilized to ease the training procedure. Thirdly, we use a deep network to conduct gender grouping. Fourthly, two recently proposed deep networks are modified with depthwise separable convolutions to perform age estimation within male and female groups. Finally, a fusion procedure is added to further boost age estimation accuracy. In the experiment, we use two benchmark datasets, IMDB-WIKI and MORPH-II, to verify our proposed method and also show a significantly performance improvement over two state-of-the-art deep CNN models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1