Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang
{"title":"MindMiner:通过交互式距离度量学习量化实体相似性","authors":"Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang","doi":"10.1145/2732158.2732173","DOIUrl":null,"url":null,"abstract":"We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.","PeriodicalId":177570,"journal":{"name":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","volume":"220 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MindMiner: Quantifying Entity Similarity via Interactive Distance Metric Learning\",\"authors\":\"Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang\",\"doi\":\"10.1145/2732158.2732173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.\",\"PeriodicalId\":177570,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"220 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2732158.2732173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2732158.2732173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MindMiner: Quantifying Entity Similarity via Interactive Distance Metric Learning
We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.