MindMiner:通过交互式距离度量学习量化实体相似性

Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang
{"title":"MindMiner:通过交互式距离度量学习量化实体相似性","authors":"Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang","doi":"10.1145/2732158.2732173","DOIUrl":null,"url":null,"abstract":"We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.","PeriodicalId":177570,"journal":{"name":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","volume":"220 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MindMiner: Quantifying Entity Similarity via Interactive Distance Metric Learning\",\"authors\":\"Xiangmin Fan, Youming Liu, Nan Cao, Jason I. Hong, Jingtao Wang\",\"doi\":\"10.1145/2732158.2732173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.\",\"PeriodicalId\":177570,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"220 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2732158.2732173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2732158.2732173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了MindMiner,这是一个混合主动接口,通过结合新的交互技术和机器学习算法来捕获主观相似性测量。MindMiner通过不确定性的主动投票和基于示例的视觉约束创建,从用户那里收集定性的、难以表达的相似性测量。MindMiner还将人类的先验知识表述为一组不等式,并通过凸优化学习定量的相似距离度量。在一个12人参与的同行评议理解任务中,我们发现MindMiner易于学习和使用,并且可以捕获用户关于写作表现的隐性知识,并将目标实体聚类到与受试者心理模型相匹配的组中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MindMiner: Quantifying Entity Similarity via Interactive Distance Metric Learning
We present MindMiner, a mixed-initiative interface for capturing subjective similarity measurements via a combination of new interaction techniques and machine learning algorithms. MindMiner collects qualitative, hard to express similarity measurements from users via active polling with uncertainty and example based visual constraint creation. MindMiner also formulates human prior knowledge into a set of inequalities and learns a quantitative similarity distance metric via convex optimization. In a 12-participant peer-review understanding task, we found MindMiner was easy to learn and use, and could capture users' implicit knowledge about writing performance and cluster target entities into groups that match subjects' mental models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Crowd-based Picture Schematization System Interactive Control and Visualization of Difficulty Inferences from User-Interface Commands A Revisit to The Identification of Contexts in Recommender Systems Multimodal Interactive Machine Learning for User Understanding Mechanix: A Sketch-Based Educational Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1