{"title":"拓扑优化技术在微电子系统热管理中的应用","authors":"M. Santhanakrishnan, T. Tilford, C. Bailey","doi":"10.1109/EUROSIME.2016.7463364","DOIUrl":null,"url":null,"abstract":"In this paper, an autonomous thermal management design process based on a topological optimisation algorithm is presented. The numerical framework uses a finite element multiphysics solver to assess fluid flow and heat transfer, coupled with the Method of Moving Asymptotes approach for topology optimisation. The design framework is utilised to develop a copper heatsink for a simplified electronics package at two differing Reynolds numbers. In both cases, the final shape resembles a tree like structure rather than a more conventional fin structure.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the application of topology optimisation techniques to thermal management of microelectronics systems\",\"authors\":\"M. Santhanakrishnan, T. Tilford, C. Bailey\",\"doi\":\"10.1109/EUROSIME.2016.7463364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an autonomous thermal management design process based on a topological optimisation algorithm is presented. The numerical framework uses a finite element multiphysics solver to assess fluid flow and heat transfer, coupled with the Method of Moving Asymptotes approach for topology optimisation. The design framework is utilised to develop a copper heatsink for a simplified electronics package at two differing Reynolds numbers. In both cases, the final shape resembles a tree like structure rather than a more conventional fin structure.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the application of topology optimisation techniques to thermal management of microelectronics systems
In this paper, an autonomous thermal management design process based on a topological optimisation algorithm is presented. The numerical framework uses a finite element multiphysics solver to assess fluid flow and heat transfer, coupled with the Method of Moving Asymptotes approach for topology optimisation. The design framework is utilised to develop a copper heatsink for a simplified electronics package at two differing Reynolds numbers. In both cases, the final shape resembles a tree like structure rather than a more conventional fin structure.