实现贝叶斯分类器的软概率神经网络

M. Menhaj, F. Delgosha
{"title":"实现贝叶斯分类器的软概率神经网络","authors":"M. Menhaj, F. Delgosha","doi":"10.1109/IJCNN.2001.939062","DOIUrl":null,"url":null,"abstract":"A classifier with the optimum decision, Bayesian classifier could be implemented with probabilistic neural networks (PNNs). The authors presented a new competitive learning algorithm for training such a network when all classes are completely separated. This paper generalizes our previous work to the case of overlapping categories. In our new perspective, the network is, in fact, made blind with respect to the overlapping training samples, so the new training algorithm is called soft PNN (or SPNN). The usefulness of SPNN has been proved by two 2-D classification problems. The simulation results highlight the merit of the proposed method.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A soft probabilistic neural network for implementation of Bayesian classifiers\",\"authors\":\"M. Menhaj, F. Delgosha\",\"doi\":\"10.1109/IJCNN.2001.939062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classifier with the optimum decision, Bayesian classifier could be implemented with probabilistic neural networks (PNNs). The authors presented a new competitive learning algorithm for training such a network when all classes are completely separated. This paper generalizes our previous work to the case of overlapping categories. In our new perspective, the network is, in fact, made blind with respect to the overlapping training samples, so the new training algorithm is called soft PNN (or SPNN). The usefulness of SPNN has been proved by two 2-D classification problems. The simulation results highlight the merit of the proposed method.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

贝叶斯分类器是一种具有最优决策的分类器,可以用概率神经网络(pnn)来实现。作者提出了一种新的竞争性学习算法,用于在所有类别完全分离的情况下训练这种网络。本文将我们以前的工作推广到重叠类别的情况。在我们的新观点中,对于重叠的训练样本,网络实际上是盲目的,因此新的训练算法被称为软PNN(或SPNN)。通过两个二维分类问题证明了SPNN的有效性。仿真结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A soft probabilistic neural network for implementation of Bayesian classifiers
A classifier with the optimum decision, Bayesian classifier could be implemented with probabilistic neural networks (PNNs). The authors presented a new competitive learning algorithm for training such a network when all classes are completely separated. This paper generalizes our previous work to the case of overlapping categories. In our new perspective, the network is, in fact, made blind with respect to the overlapping training samples, so the new training algorithm is called soft PNN (or SPNN). The usefulness of SPNN has been proved by two 2-D classification problems. The simulation results highlight the merit of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1