研究对手样本对网络物理系统入侵检测的影响

G. A. P. D. Silva, R. S. Miani, B. Zarpelão
{"title":"研究对手样本对网络物理系统入侵检测的影响","authors":"G. A. P. D. Silva, R. S. Miani, B. Zarpelão","doi":"10.5753/sbrc.2023.488","DOIUrl":null,"url":null,"abstract":"Neste artigo, investigamos o impacto que amostras adversárias causam em algoritmos de aprendizado de máquina supervisionado utilizados para detectar ataques em um sistema ciberfísico. O estudo leva em consideração o cenário onde um atacante consegue obter acesso a dados do sistema alvo que podem ser utilizados para o treinamento do modelo adversário. O objetivo do atacante é gerar amostras maliciosas utilizando aprendizado de máquina adversário para enganar os modelos implementados para detecção de intrusão. Foi observado através dos ataques FGSM (Fast Gradient Sign Method) e JSMA (Jacobian Saliency Map Attack) que o conhecimento prévio da arquitetura do algoritmo alvo pode levar a ataques mais severos, e que os algoritmos alvo testados sofrem diferentes impactos conforme se varia o volume de dados roubados pelo atacante. Por fim, o método FGSM produziu ataques com maior severidade média que o JSMA, mas o JSMA apresenta a vantagem de ser menos invasivo e, possivelmente, mais difícil de ser detectado.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigando o Impacto de Amostras Adversárias na Detecção de Intrusões em um Sistema Ciberfísico\",\"authors\":\"G. A. P. D. Silva, R. S. Miani, B. Zarpelão\",\"doi\":\"10.5753/sbrc.2023.488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neste artigo, investigamos o impacto que amostras adversárias causam em algoritmos de aprendizado de máquina supervisionado utilizados para detectar ataques em um sistema ciberfísico. O estudo leva em consideração o cenário onde um atacante consegue obter acesso a dados do sistema alvo que podem ser utilizados para o treinamento do modelo adversário. O objetivo do atacante é gerar amostras maliciosas utilizando aprendizado de máquina adversário para enganar os modelos implementados para detecção de intrusão. Foi observado através dos ataques FGSM (Fast Gradient Sign Method) e JSMA (Jacobian Saliency Map Attack) que o conhecimento prévio da arquitetura do algoritmo alvo pode levar a ataques mais severos, e que os algoritmos alvo testados sofrem diferentes impactos conforme se varia o volume de dados roubados pelo atacante. Por fim, o método FGSM produziu ataques com maior severidade média que o JSMA, mas o JSMA apresenta a vantagem de ser menos invasivo e, possivelmente, mais difícil de ser detectado.\",\"PeriodicalId\":254689,\"journal\":{\"name\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbrc.2023.488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了对手样本对用于检测网络物理系统攻击的监督机器学习算法的影响。该研究考虑了攻击者可以访问目标系统数据的场景,这些数据可以用于对手模型的训练。攻击者的目标是使用对手机器学习生成恶意样本,以欺骗用于入侵检测的模型。通过FGSM(快速梯度符号法)和JSMA (Jacobian显著性映射攻击)攻击观察到,目标算法架构的先验知识可能导致更严重的攻击,并且目标算法受到不同的影响,因为攻击者窃取的数据量不同。最后,FGSM方法产生的攻击平均严重程度高于JSMA,但JSMA具有侵袭性小、可能更难检测的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigando o Impacto de Amostras Adversárias na Detecção de Intrusões em um Sistema Ciberfísico
Neste artigo, investigamos o impacto que amostras adversárias causam em algoritmos de aprendizado de máquina supervisionado utilizados para detectar ataques em um sistema ciberfísico. O estudo leva em consideração o cenário onde um atacante consegue obter acesso a dados do sistema alvo que podem ser utilizados para o treinamento do modelo adversário. O objetivo do atacante é gerar amostras maliciosas utilizando aprendizado de máquina adversário para enganar os modelos implementados para detecção de intrusão. Foi observado através dos ataques FGSM (Fast Gradient Sign Method) e JSMA (Jacobian Saliency Map Attack) que o conhecimento prévio da arquitetura do algoritmo alvo pode levar a ataques mais severos, e que os algoritmos alvo testados sofrem diferentes impactos conforme se varia o volume de dados roubados pelo atacante. Por fim, o método FGSM produziu ataques com maior severidade média que o JSMA, mas o JSMA apresenta a vantagem de ser menos invasivo e, possivelmente, mais difícil de ser detectado.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telemetria Adaptativa Usando Aprendizado por Reforço Profundo em Redes Definidas por Software Heurística Escalável Para o Problema de Alocação de vBBU e Comprimento de Onda em Cloud-Fog RAN Autoencoders Assimétricos para a Compressão de Dados IoT Caracterização das vulnerabilidades dos roteadores Wi-Fi no mercado brasileiro Gaming On The Edge: Uma arquitetura de computação na borda para jogos em dispositivos móveis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1