利用聚类提高模糊基因表达分析的性能

R. Reynolds, H. Ressom, M. Musavi, C. Domnisoru
{"title":"利用聚类提高模糊基因表达分析的性能","authors":"R. Reynolds, H. Ressom, M. Musavi, C. Domnisoru","doi":"10.1109/IJCNN.2001.938806","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of fuzzy modeling algorithms to analyze gene expression data. Current algorithms apply all potential combinations of genes to a fuzzy model of gene interaction (for example, activator/inhibitor/target) and are evaluated on the basis of how well they fit the model. However, the algorithm is computationally intensive; the activator/inhibitor model has an algorithmic complexity of O(N/sup 3/), while more complex models (multiple activators/inhibitors) have even higher complexities. As a result, the algorithm takes a significant amount of time to analyze an entire genome. The purpose of this paper is to propose the use of clustering as a preprocessing method to reduce the total number of gene combinations analyzed. By first analyzing how well cluster centers fit the model, the algorithm can ignore combinations of genes that are unlikely to fit. This will allow the algorithm to run in a shorter amount of time with minimal effect on the results.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Use of clustering to improve performance in fuzzy gene expression analysis\",\"authors\":\"R. Reynolds, H. Ressom, M. Musavi, C. Domnisoru\",\"doi\":\"10.1109/IJCNN.2001.938806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of fuzzy modeling algorithms to analyze gene expression data. Current algorithms apply all potential combinations of genes to a fuzzy model of gene interaction (for example, activator/inhibitor/target) and are evaluated on the basis of how well they fit the model. However, the algorithm is computationally intensive; the activator/inhibitor model has an algorithmic complexity of O(N/sup 3/), while more complex models (multiple activators/inhibitors) have even higher complexities. As a result, the algorithm takes a significant amount of time to analyze an entire genome. The purpose of this paper is to propose the use of clustering as a preprocessing method to reduce the total number of gene combinations analyzed. By first analyzing how well cluster centers fit the model, the algorithm can ignore combinations of genes that are unlikely to fit. This will allow the algorithm to run in a shorter amount of time with minimal effect on the results.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出使用模糊建模算法来分析基因表达数据。目前的算法将所有潜在的基因组合应用于基因相互作用的模糊模型(例如,激活因子/抑制剂/靶标),并根据它们与模型的拟合程度进行评估。然而,该算法的计算量很大;活化剂/抑制剂模型的算法复杂度为0 (N/sup 3/),而更复杂的模型(多种活化剂/抑制剂)具有更高的复杂性。因此,该算法需要花费大量时间来分析整个基因组。本文的目的是提出使用聚类作为预处理方法来减少分析的基因组合总数。通过首先分析聚类中心对模型的拟合程度,该算法可以忽略不太可能拟合的基因组合。这将允许算法在更短的时间内运行,对结果的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of clustering to improve performance in fuzzy gene expression analysis
This paper proposes the use of fuzzy modeling algorithms to analyze gene expression data. Current algorithms apply all potential combinations of genes to a fuzzy model of gene interaction (for example, activator/inhibitor/target) and are evaluated on the basis of how well they fit the model. However, the algorithm is computationally intensive; the activator/inhibitor model has an algorithmic complexity of O(N/sup 3/), while more complex models (multiple activators/inhibitors) have even higher complexities. As a result, the algorithm takes a significant amount of time to analyze an entire genome. The purpose of this paper is to propose the use of clustering as a preprocessing method to reduce the total number of gene combinations analyzed. By first analyzing how well cluster centers fit the model, the algorithm can ignore combinations of genes that are unlikely to fit. This will allow the algorithm to run in a shorter amount of time with minimal effect on the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1