A. Goulart, Carlos Dias Maciel, R. Guido, Katia Cristina Silva Paulo, Ivan Nunes da Silva
{"title":"基于熵和分形空隙度的音乐类型分类","authors":"A. Goulart, Carlos Dias Maciel, R. Guido, Katia Cristina Silva Paulo, Ivan Nunes da Silva","doi":"10.1109/ISM.2011.94","DOIUrl":null,"url":null,"abstract":"In this letter, we present an automatic music genre classification scheme based on a Gaussian Mixture Model (GMM) classifier. The proposed technique adopts entropies and lacunarities as features for the classifications. Tests were carried out with four styles of Brazilian music, namely Ax ´e, Bossa Nova, Forro ´, and Samba.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Music Genre Classification Based on Entropy and Fractal Lacunarity\",\"authors\":\"A. Goulart, Carlos Dias Maciel, R. Guido, Katia Cristina Silva Paulo, Ivan Nunes da Silva\",\"doi\":\"10.1109/ISM.2011.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present an automatic music genre classification scheme based on a Gaussian Mixture Model (GMM) classifier. The proposed technique adopts entropies and lacunarities as features for the classifications. Tests were carried out with four styles of Brazilian music, namely Ax ´e, Bossa Nova, Forro ´, and Samba.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
在这篇文章中,我们提出了一个基于高斯混合模型(GMM)分类器的音乐类型自动分类方案。该方法采用熵和缺度作为分类的特征。测试使用了四种巴西音乐风格,即Ax ' e, Bossa Nova, Forro '和Samba。
Music Genre Classification Based on Entropy and Fractal Lacunarity
In this letter, we present an automatic music genre classification scheme based on a Gaussian Mixture Model (GMM) classifier. The proposed technique adopts entropies and lacunarities as features for the classifications. Tests were carried out with four styles of Brazilian music, namely Ax ´e, Bossa Nova, Forro ´, and Samba.