利用功率趋势预测器提高数据中心热管理效率

Chuan Song, Yanbing Sun, N. Ahuja, Xiaogang Sun, Litrin Jiang, Abishai Daniel, R. Khanna, T. Zhou, Xiaoping Zhou, Lifei Zhang
{"title":"利用功率趋势预测器提高数据中心热管理效率","authors":"Chuan Song, Yanbing Sun, N. Ahuja, Xiaogang Sun, Litrin Jiang, Abishai Daniel, R. Khanna, T. Zhou, Xiaoping Zhou, Lifei Zhang","doi":"10.1109/SEMI-THERM.2017.7896923","DOIUrl":null,"url":null,"abstract":"This paper introduced one optimized proactive cooling management approach based on power variation trend analysis. Through analyzing the data center historical power telemetries, the power predictor is able to predicate power variation with 5– 15 minutes granularity. The cooling controller uses the observed heat information and estimated thermal variation trend to drive CRAC to manage temperature situation at prediction window. To validate cooling results from different cooling parameters, one risk level evaluation method is proposed and the experiments for different prediction window are conducted and the result is presented.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using power trend predicator to improve datacenter thermal management efficiency\",\"authors\":\"Chuan Song, Yanbing Sun, N. Ahuja, Xiaogang Sun, Litrin Jiang, Abishai Daniel, R. Khanna, T. Zhou, Xiaoping Zhou, Lifei Zhang\",\"doi\":\"10.1109/SEMI-THERM.2017.7896923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduced one optimized proactive cooling management approach based on power variation trend analysis. Through analyzing the data center historical power telemetries, the power predictor is able to predicate power variation with 5– 15 minutes granularity. The cooling controller uses the observed heat information and estimated thermal variation trend to drive CRAC to manage temperature situation at prediction window. To validate cooling results from different cooling parameters, one risk level evaluation method is proposed and the experiments for different prediction window are conducted and the result is presented.\",\"PeriodicalId\":442782,\"journal\":{\"name\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEMI-THERM.2017.7896923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于功率变化趋势分析的优化主动冷却管理方法。通过对数据中心历史功率遥测数据的分析,功率预测器能够以5 ~ 15分钟的粒度预测功率变化。冷却控制器利用观测到的热量信息和预估的热量变化趋势驱动CRAC对预测窗口内的温度情况进行管理。为了验证不同冷却参数下的冷却结果,提出了一种风险等级评价方法,并进行了不同预测窗口下的实验,给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using power trend predicator to improve datacenter thermal management efficiency
This paper introduced one optimized proactive cooling management approach based on power variation trend analysis. Through analyzing the data center historical power telemetries, the power predictor is able to predicate power variation with 5– 15 minutes granularity. The cooling controller uses the observed heat information and estimated thermal variation trend to drive CRAC to manage temperature situation at prediction window. To validate cooling results from different cooling parameters, one risk level evaluation method is proposed and the experiments for different prediction window are conducted and the result is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An experimental and theoretical investigation of the effects of supply air conditions on computational efficiency in data centers employing aisle containment Performance of a mixed mode air handling unit for direct liquid-cooled servers High performance computing (HPC) 3 dimensional integrated (3DI) thermal test vehicle validation effort Rack-level study of hybrid cooled servers using warm water cooling for distributed vs. centralized pumping systems A new hybrid heat sink with impinging micro-jet arrays and microchannels fabricated using high volume additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1