强加性噪声下稀疏连接网络的滤波

A. Berrones
{"title":"强加性噪声下稀疏连接网络的滤波","authors":"A. Berrones","doi":"10.1109/ENC.2006.15","DOIUrl":null,"url":null,"abstract":"A new approach to the problem of noise reduction in signals composed by superpositions of basis functions is proposed. The method is based on interpreting the components of signal models as nodes in a sparsely connected network of overlaps (scalar products). Every point in the data sample expresses an overlap. Networks of this kind, in which nodes carry information by means of vectors, define a knowledge network, a recently introduced concept in the field of statistical physics. Previous results on the statistical properties of knowledge networks are generalized to noise reduction and its shown that is possible to extract important hidden quantities. In particular, an algorithm capable to give estimates of the unknown number of degrees of freedom in signal models is constructed and tested","PeriodicalId":432491,"journal":{"name":"2006 Seventh Mexican International Conference on Computer Science","volume":"4657 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Filtering by Sparsely Connected Networks Under the Presence of Strong Additive Noise\",\"authors\":\"A. Berrones\",\"doi\":\"10.1109/ENC.2006.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to the problem of noise reduction in signals composed by superpositions of basis functions is proposed. The method is based on interpreting the components of signal models as nodes in a sparsely connected network of overlaps (scalar products). Every point in the data sample expresses an overlap. Networks of this kind, in which nodes carry information by means of vectors, define a knowledge network, a recently introduced concept in the field of statistical physics. Previous results on the statistical properties of knowledge networks are generalized to noise reduction and its shown that is possible to extract important hidden quantities. In particular, an algorithm capable to give estimates of the unknown number of degrees of freedom in signal models is constructed and tested\",\"PeriodicalId\":432491,\"journal\":{\"name\":\"2006 Seventh Mexican International Conference on Computer Science\",\"volume\":\"4657 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Seventh Mexican International Conference on Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENC.2006.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Seventh Mexican International Conference on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENC.2006.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的基函数叠加信号降噪方法。该方法基于将信号模型的组成部分解释为重叠(标量积)稀疏连接网络中的节点。数据样本中的每个点表示一个重叠。这种网络,其中的节点通过向量传递信息,定义了一个知识网络,这是统计物理领域最近引入的一个概念。将以往关于知识网络统计特性的研究成果推广到降噪领域,表明提取重要的隐藏量是可能的。特别地,构建并测试了一种能够给出信号模型中未知自由度数估计的算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filtering by Sparsely Connected Networks Under the Presence of Strong Additive Noise
A new approach to the problem of noise reduction in signals composed by superpositions of basis functions is proposed. The method is based on interpreting the components of signal models as nodes in a sparsely connected network of overlaps (scalar products). Every point in the data sample expresses an overlap. Networks of this kind, in which nodes carry information by means of vectors, define a knowledge network, a recently introduced concept in the field of statistical physics. Previous results on the statistical properties of knowledge networks are generalized to noise reduction and its shown that is possible to extract important hidden quantities. In particular, an algorithm capable to give estimates of the unknown number of degrees of freedom in signal models is constructed and tested
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Invited Talk Abstracts The Crescent Lab: A smart home lab for students Adaptive Node Refinement Collocation Method for Partial Differential Equations Defining new argumentation-based semantics by minimal models Multi-robot Motion Coordination based on Swing Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1