细胞神经网络的视觉学习

A. Badalov, X. Vilasís-Cardona, J. Albó-Canals
{"title":"细胞神经网络的视觉学习","authors":"A. Badalov, X. Vilasís-Cardona, J. Albó-Canals","doi":"10.1109/CNNA.2012.6331425","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is a powerful tool for teaching robotic agents to perform tasks in real environments. Visual information provided by a camera could be a cheap and rich source of information about an agent's surroundings, if this information were represented in a compact and generalizable form. We turn to cellular neural networks as the means of transforming visual input to a representation suitable for reinforcement learning. We investigate a CNN-based image processing algorithm and describe a method for efficiently computing CNNs using the DirectX 10 API.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual learning with cellular neural networks\",\"authors\":\"A. Badalov, X. Vilasís-Cardona, J. Albó-Canals\",\"doi\":\"10.1109/CNNA.2012.6331425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is a powerful tool for teaching robotic agents to perform tasks in real environments. Visual information provided by a camera could be a cheap and rich source of information about an agent's surroundings, if this information were represented in a compact and generalizable form. We turn to cellular neural networks as the means of transforming visual input to a representation suitable for reinforcement learning. We investigate a CNN-based image processing algorithm and describe a method for efficiently computing CNNs using the DirectX 10 API.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

强化学习是教导机器人代理在真实环境中执行任务的强大工具。摄像机提供的视觉信息可能是一个廉价而丰富的信息来源,如果这些信息以紧凑和可推广的形式表示的话。我们转向细胞神经网络作为将视觉输入转换为适合强化学习的表示的手段。我们研究了一种基于cnn的图像处理算法,并描述了一种使用DirectX 10 API高效计算cnn的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual learning with cellular neural networks
Reinforcement learning is a powerful tool for teaching robotic agents to perform tasks in real environments. Visual information provided by a camera could be a cheap and rich source of information about an agent's surroundings, if this information were represented in a compact and generalizable form. We turn to cellular neural networks as the means of transforming visual input to a representation suitable for reinforcement learning. We investigate a CNN-based image processing algorithm and describe a method for efficiently computing CNNs using the DirectX 10 API.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization in cellular spin torque oscillator arrays CNN based dark signal non-uniformity estimation Advanced background elimination in digital holographic microscopy Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic 2nd order 2-D spatial filters and Cellular Neural Network implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1