Xiaodong Du, Bin Liang, Wenfu Xu, Xueqian Wang, Jianghua Yu
{"title":"基于自然特征的GEO卫星位姿测量","authors":"Xiaodong Du, Bin Liang, Wenfu Xu, Xueqian Wang, Jianghua Yu","doi":"10.1109/ICVRV.2012.16","DOIUrl":null,"url":null,"abstract":"In order to perform the on-orbit servicing mission, the robotic system is firstly required to approach and dock with the target autonomously, for which the measurement of relative pose is the key. It is a challenging task since the existing GEO satellites are generally non-cooperative, i.e. no artificial mark is mounted to aid the measurement. In this paper, a method based on natural features is proposed to estimate the pose of a GEO satellite in the phase of R-bar final approach. The adapter ring and the bottom edges of the satellite are chosen as the recognized object. By the circular feature, the relative position can be resolved while two solutions of the orientation are obtained. The vanishing points formed by the bottom edges are applied to solve the orientation-duality problem so that the on board camera requires no specific motions. The corresponding algorithm for image processing and pose estimation is presented. Computer simulations verify the proposed method.","PeriodicalId":421789,"journal":{"name":"2012 International Conference on Virtual Reality and Visualization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pose Measurement of a GEO Satellite Based on Natural Features\",\"authors\":\"Xiaodong Du, Bin Liang, Wenfu Xu, Xueqian Wang, Jianghua Yu\",\"doi\":\"10.1109/ICVRV.2012.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to perform the on-orbit servicing mission, the robotic system is firstly required to approach and dock with the target autonomously, for which the measurement of relative pose is the key. It is a challenging task since the existing GEO satellites are generally non-cooperative, i.e. no artificial mark is mounted to aid the measurement. In this paper, a method based on natural features is proposed to estimate the pose of a GEO satellite in the phase of R-bar final approach. The adapter ring and the bottom edges of the satellite are chosen as the recognized object. By the circular feature, the relative position can be resolved while two solutions of the orientation are obtained. The vanishing points formed by the bottom edges are applied to solve the orientation-duality problem so that the on board camera requires no specific motions. The corresponding algorithm for image processing and pose estimation is presented. Computer simulations verify the proposed method.\",\"PeriodicalId\":421789,\"journal\":{\"name\":\"2012 International Conference on Virtual Reality and Visualization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Virtual Reality and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2012.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pose Measurement of a GEO Satellite Based on Natural Features
In order to perform the on-orbit servicing mission, the robotic system is firstly required to approach and dock with the target autonomously, for which the measurement of relative pose is the key. It is a challenging task since the existing GEO satellites are generally non-cooperative, i.e. no artificial mark is mounted to aid the measurement. In this paper, a method based on natural features is proposed to estimate the pose of a GEO satellite in the phase of R-bar final approach. The adapter ring and the bottom edges of the satellite are chosen as the recognized object. By the circular feature, the relative position can be resolved while two solutions of the orientation are obtained. The vanishing points formed by the bottom edges are applied to solve the orientation-duality problem so that the on board camera requires no specific motions. The corresponding algorithm for image processing and pose estimation is presented. Computer simulations verify the proposed method.