{"title":"智能电网有源滤波器多目标优化配置的决策理论方法","authors":"G. Carpinelli, F. Mottola, D. Proto, A. Russo","doi":"10.1109/ICHQP53011.2022.9808433","DOIUrl":null,"url":null,"abstract":"Waveform distortions are one of the most diffused Power Quality disturbances and are nowadays gaining a growing interest by the researchers of modern smart grids where a massive presence of new technologies in distributed energy resources and in advanced smart metering systems is expected. Shunt active power filters are considered a high performing solution to limit the impact of this disturbance on the smart grid equipment, but their location and size in a multi-converter smart grid requires an optimization approach that should contemporaneously consider different and, sometimes, conflicting objectives. In this paper, a multi-objective optimization model is formulated to solve the problem and a new simplified approach is proposed to solve the model under non-certainty. The proposed approach applies the Rank-order centroid weights method and a criterion of the Decision Theory under non-certainty, assuming a complete knowledge of the future probabilities. Numerical applications to a test network permit to highlight the ease of application of the proposed method and the interest in the obtained results.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Decision Theory Approach for the Multi-objective Optimal Allocation of Active Filters in Smart Grids\",\"authors\":\"G. Carpinelli, F. Mottola, D. Proto, A. Russo\",\"doi\":\"10.1109/ICHQP53011.2022.9808433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveform distortions are one of the most diffused Power Quality disturbances and are nowadays gaining a growing interest by the researchers of modern smart grids where a massive presence of new technologies in distributed energy resources and in advanced smart metering systems is expected. Shunt active power filters are considered a high performing solution to limit the impact of this disturbance on the smart grid equipment, but their location and size in a multi-converter smart grid requires an optimization approach that should contemporaneously consider different and, sometimes, conflicting objectives. In this paper, a multi-objective optimization model is formulated to solve the problem and a new simplified approach is proposed to solve the model under non-certainty. The proposed approach applies the Rank-order centroid weights method and a criterion of the Decision Theory under non-certainty, assuming a complete knowledge of the future probabilities. Numerical applications to a test network permit to highlight the ease of application of the proposed method and the interest in the obtained results.\",\"PeriodicalId\":249133,\"journal\":{\"name\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP53011.2022.9808433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Decision Theory Approach for the Multi-objective Optimal Allocation of Active Filters in Smart Grids
Waveform distortions are one of the most diffused Power Quality disturbances and are nowadays gaining a growing interest by the researchers of modern smart grids where a massive presence of new technologies in distributed energy resources and in advanced smart metering systems is expected. Shunt active power filters are considered a high performing solution to limit the impact of this disturbance on the smart grid equipment, but their location and size in a multi-converter smart grid requires an optimization approach that should contemporaneously consider different and, sometimes, conflicting objectives. In this paper, a multi-objective optimization model is formulated to solve the problem and a new simplified approach is proposed to solve the model under non-certainty. The proposed approach applies the Rank-order centroid weights method and a criterion of the Decision Theory under non-certainty, assuming a complete knowledge of the future probabilities. Numerical applications to a test network permit to highlight the ease of application of the proposed method and the interest in the obtained results.