三维集成电路(3D IC)平面图和电源/地网络协同合成

P. Falkenstern, Yuan Xie, Yao-Wen Chang, Yu Wang
{"title":"三维集成电路(3D IC)平面图和电源/地网络协同合成","authors":"P. Falkenstern, Yuan Xie, Yao-Wen Chang, Yu Wang","doi":"10.1109/ASPDAC.2010.5419899","DOIUrl":null,"url":null,"abstract":"Three Dimensional Integrated Circuits (3D ICs) are currently being developed to improve existing 2D designs by providing smaller chip areas and higher performance and lower power consumption. However, before 3D ICs become a viable technology, the 3D design space needs to be fully explored and 3D EDA tools need to be developed. To help explore the 3D design space and help fill the need for 3D EDA tools, the 3D Floorplan and Power/Ground (P/G) Co-synthesis tool is developed in this work, which develops the floorplan and the P/G network concurrently. Most current 3D IC floorplanners neglect the effects of the 3D P/G network on the design, which may lead to large IR drops in the circuit. To create feasible floorplans with efficient P/G networks, the 3D Floorplan and P/G Co-synthesis tool optimizes the floorplan in terms of wirelength, area and P/G routing area and IR drops. The tool integrates a 3D B*-tree floorplan representation, a resistive P/G mesh, and a Simulated Annealing (SA) engine to explore the 3D floorplan and P/G network. The results of experiments using the 3D Floorplan and P/G Co-synthesis tool show that 3D ICs tend to increase the P/G routing area while decreasing the IR drops in the circuit. By considering the IR drop while floorplanning, exploring the 3D P/G design space, and evaluating 3D IC's effect on 3D P/G networks, the 3D Floorplan and P/G Co-synthesis tool can develop a more efficient 3D IC.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Three-dimensional integrated circuits (3D IC) Floorplan and Power/Ground Network Co-synthesis\",\"authors\":\"P. Falkenstern, Yuan Xie, Yao-Wen Chang, Yu Wang\",\"doi\":\"10.1109/ASPDAC.2010.5419899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three Dimensional Integrated Circuits (3D ICs) are currently being developed to improve existing 2D designs by providing smaller chip areas and higher performance and lower power consumption. However, before 3D ICs become a viable technology, the 3D design space needs to be fully explored and 3D EDA tools need to be developed. To help explore the 3D design space and help fill the need for 3D EDA tools, the 3D Floorplan and Power/Ground (P/G) Co-synthesis tool is developed in this work, which develops the floorplan and the P/G network concurrently. Most current 3D IC floorplanners neglect the effects of the 3D P/G network on the design, which may lead to large IR drops in the circuit. To create feasible floorplans with efficient P/G networks, the 3D Floorplan and P/G Co-synthesis tool optimizes the floorplan in terms of wirelength, area and P/G routing area and IR drops. The tool integrates a 3D B*-tree floorplan representation, a resistive P/G mesh, and a Simulated Annealing (SA) engine to explore the 3D floorplan and P/G network. The results of experiments using the 3D Floorplan and P/G Co-synthesis tool show that 3D ICs tend to increase the P/G routing area while decreasing the IR drops in the circuit. By considering the IR drop while floorplanning, exploring the 3D P/G design space, and evaluating 3D IC's effect on 3D P/G networks, the 3D Floorplan and P/G Co-synthesis tool can develop a more efficient 3D IC.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

三维集成电路(3D ic)目前正在开发中,通过提供更小的芯片面积、更高的性能和更低的功耗来改进现有的2D设计。然而,在3D集成电路成为一项可行的技术之前,需要充分探索3D设计空间,并开发3D EDA工具。为了帮助探索3D设计空间并帮助满足对3D EDA工具的需求,本工作开发了3D平面图和电源/地面(P/G)协同合成工具,该工具同时开发了平面图和P/G网络。目前大多数3D集成电路的规划者忽视了3D P/G网络对设计的影响,这可能导致电路中出现较大的红外下降。为了创建具有高效P/G网络的可行平面图,3D平面图和P/G协同合成工具在无线、面积、P/G路由面积和IR下降方面优化了平面图。该工具集成了3D B*树平面图表示、电阻P/G网格和模拟退火(SA)引擎,用于探索3D平面图和P/G网络。使用3D平面图和P/G共合成工具的实验结果表明,3D集成电路倾向于增加P/G布线面积,同时降低电路中的红外降。通过在平面规划时考虑IR下降,探索3D P/G设计空间,并评估3D IC对3D P/G网络的影响,3D平面图和P/G协同合成工具可以开发出更高效的3D IC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional integrated circuits (3D IC) Floorplan and Power/Ground Network Co-synthesis
Three Dimensional Integrated Circuits (3D ICs) are currently being developed to improve existing 2D designs by providing smaller chip areas and higher performance and lower power consumption. However, before 3D ICs become a viable technology, the 3D design space needs to be fully explored and 3D EDA tools need to be developed. To help explore the 3D design space and help fill the need for 3D EDA tools, the 3D Floorplan and Power/Ground (P/G) Co-synthesis tool is developed in this work, which develops the floorplan and the P/G network concurrently. Most current 3D IC floorplanners neglect the effects of the 3D P/G network on the design, which may lead to large IR drops in the circuit. To create feasible floorplans with efficient P/G networks, the 3D Floorplan and P/G Co-synthesis tool optimizes the floorplan in terms of wirelength, area and P/G routing area and IR drops. The tool integrates a 3D B*-tree floorplan representation, a resistive P/G mesh, and a Simulated Annealing (SA) engine to explore the 3D floorplan and P/G network. The results of experiments using the 3D Floorplan and P/G Co-synthesis tool show that 3D ICs tend to increase the P/G routing area while decreasing the IR drops in the circuit. By considering the IR drop while floorplanning, exploring the 3D P/G design space, and evaluating 3D IC's effect on 3D P/G networks, the 3D Floorplan and P/G Co-synthesis tool can develop a more efficient 3D IC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1